Saturday, 31 August 2013

`sum_(n=1)^oo 5^n/n^4` Use the Root Test to determine the convergence or divergence of the series.

To determine the convergence or divergence of a series `sum a_n` using Root test, we evaluate a limit as:


`lim_(n-gtoo) root(n)(|a_n|)= L`


or


`lim_(n-gtoo) |a_n|^(1/n)= L`


Then, we follow the conditions:


a) `Llt1` then the series is absolutely convergent.


b) `Lgt1` then the series is divergent.


c) `L=1` or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.


We may apply Root...

To determine the convergence or divergence of a series `sum a_n` using Root test, we evaluate a limit as:


`lim_(n-gtoo) root(n)(|a_n|)= L`


or


`lim_(n-gtoo) |a_n|^(1/n)= L`


Then, we follow the conditions:


a) `Llt1` then the series is absolutely convergent.


b) `Lgt1` then the series is divergent.


c) `L=1` or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.


We may apply Root test on the given series `sum_(n=1)^oo 5^n/n^4` when we let:  `a_n =5^n/n^4` .


Applying the Root test, we set-up the limit as: 


`lim_(n-gtoo) |5^n/n^4|^(1/n) =lim_(n-gtoo) (5^n/n^4)^(1/n)`


Apply Law of Exponent: `(x/y)^n = x^n/y^n` and `(x^n)^m= x^(n*m)` .


`lim_(n-gtoo) (5^n/n^4)^(1/n) =lim_(n-gtoo) (5^n)^(1/n)/(n^4)^(1/n)`


                       ` =lim_(n-gtoo)5^(n*1/n)/n^(4*1/n)`


                       ` =lim_(n-gtoo)5^(n/n)/n^(4/n)`


                       ` =lim_(n-gtoo)5^1/n^(4/n)`


                       ` =lim_(n-gtoo)5/n^(4/n)`


Evaluate the limit.


`lim_(n-gtoo) 5/n^(4/n)=5 lim_(n-gtoo) 1/n^(4/n) `         


                ` =5 *1/oo^(4/oo)`


                ` =5 *1/oo^(0)`


                ` =5 *1/1`


                ` = 5*1`


                ` =5`


The limit value `L =5` satisfies the condition: `Lgt1` since `5gt1` .


Conclusion: The series `sum_(n=1)^oo 5^n/n^4` is divergent.

No comments:

Post a Comment