Saturday, 28 December 2013

`y = x^(2/x)` Use logarithmic differentiation to find dy/dx

 For the given problem:` y = x^(2/x)` , we apply the natural logarithm on both sides:


`ln(y) =ln(x^(2/x))`


Apply the natural logarithm property: `ln(x^n) = n*ln(x)` .


`ln(y) = (2/x) *ln(x)`


Apply chain rule  on the left side since y is is function of x.


`d/dx(ln(y))= 1/y *y'`



Apply product rule:` d/(dx) (u*v) = u'*v + v' *u` on the right side:


Let `u=2/x` then `u' = -2/x^2`


    ` v =ln(x)` then`...

 For the given problem:` y = x^(2/x)` , we apply the natural logarithm on both sides:


`ln(y) =ln(x^(2/x))`


Apply the natural logarithm property: `ln(x^n) = n*ln(x)` .


`ln(y) = (2/x) *ln(x)`


Apply chain rule  on the left side since y is is function of x.


`d/dx(ln(y))= 1/y *y'`



Apply product rule:` d/(dx) (u*v) = u'*v + v' *u` on the right side:


Let `u=2/x` then `u' = -2/x^2`


    ` v =ln(x)` then` v' = 1/x`


`d/(dx) ((2/x) *ln(x)) =d/(dx) ((2/x)) *ln(x) +(2/x) *d/(dx) (ln(x))`


                                `= (-2/x^2)*ln(x) + (2/x)(1/x)`


                              ` =(-2)/(x^2ln(x))+ 2/x^2`


                          ` = (-2ln(x)+2)/x^2`



The derivative of `ln(y) = (2/x) *ln(x) ` becomes :


`1/y*y'=(-2ln(x)+2)/x^2`


 Isolate y' by multiplying both sides by (y):


`y* (1/y*y')= ((-2ln(x)+2)/x^2)*y`


`y' =((-2ln(x)+2)*y)/x^2`


Plug-in `y = x^(2/x) `  on the right side:


`y' =((-2ln(x)+2)*x^(2/x))/x^2`



Or `y' =((-2ln(x)+2)*x^(2/x))*x^(-2)`


   `y' =(-2ln(x)+2)*x^(2/x-2)`


   `y' =(-2ln(x)+2)*x^((2-2x)/x)`


   ` y' =-2x^((2-2x)/x)ln(x)+2x^((2-2x)/x)`


`    y = -2x^((2-2x)/x) (lnx-1)

No comments:

Post a Comment