Sunday, 19 January 2014

`int 1/(x^2-4x+9) dx` Find the indefinite integral

`int1/(x^2-4x+9)dx`


Let's complete the square for the denominator of the integral as:


`(x^2-4x+9)=(x-2)^2+5`  


`(x-2)^2+(sqrt(5))^2`


`int1/(x^2-4x+9)dx=int1/((x-2)^2+(sqrt(5))^2)dx`


Let's apply the integral substitution,


substitute `u=x-2`


`du=1dx`


`=int1/(u^2+(sqrt(5))^2)du`


Now use the standard integral :`int1/(x^2+a^2)=1/aarctan(x/a)`


`=1/sqrt(5)arctan(u/sqrt(5))`


substitute back u=(x-2) and add a constant C to the solution,


`=1/sqrt(5)arctan((x-2)/sqrt(5))+C`


`int1/(x^2-4x+9)dx`


Let's complete the square for the denominator of the integral as:


`(x^2-4x+9)=(x-2)^2+5`  


`(x-2)^2+(sqrt(5))^2`


`int1/(x^2-4x+9)dx=int1/((x-2)^2+(sqrt(5))^2)dx`


Let's apply the integral substitution,


substitute `u=x-2`


`du=1dx`


`=int1/(u^2+(sqrt(5))^2)du`


Now use the standard integral :`int1/(x^2+a^2)=1/aarctan(x/a)`


`=1/sqrt(5)arctan(u/sqrt(5))`


substitute back u=(x-2) and add a constant C to the solution,


`=1/sqrt(5)arctan((x-2)/sqrt(5))+C`


No comments:

Post a Comment