Friday, 17 January 2014

`int e^x/((e^(2x)+1)(e^x-1)) dx` Use substitution and partial fractions to find the indefinite integral

`inte^x/((e^(2x)+1)(e^x-1))dx`


Apply integral substitution:`u=e^x`


`=>du=e^xdx`


`=int1/((u^2+1)(u-1))du`


Now let's create partial fraction template for the integrand,


`1/((u^2+1)(u-1))=A/(u-1)+(Bu+C)/(u^2+1)`


Multiply the equation by the denominator,


`1=A(u^2+1)+(Bu+C)(u-1)`


`=>1=Au^2+A+Bu^2-Bu+Cu-C`


`=>1=(A+B)u^2+(-B+C)u+A-C`


Equating the coefficients of the like terms,


`A+B=0`    -------------------------(1)


`-B+C=0`  -----------------------(2)


`A-C=1`       -----------------------(3)


Now we have to solve the above three linear equations to get A, B and C,


From equation 1, `B=-A`


Substitute B in equation 2,


`-(-A)+C=0`


`=>A+C=0`    ---------------------(4)


Add equations 3 and 4,


`2A=1`


...

`inte^x/((e^(2x)+1)(e^x-1))dx`


Apply integral substitution:`u=e^x`


`=>du=e^xdx`


`=int1/((u^2+1)(u-1))du`


Now let's create partial fraction template for the integrand,


`1/((u^2+1)(u-1))=A/(u-1)+(Bu+C)/(u^2+1)`


Multiply the equation by the denominator,


`1=A(u^2+1)+(Bu+C)(u-1)`


`=>1=Au^2+A+Bu^2-Bu+Cu-C`


`=>1=(A+B)u^2+(-B+C)u+A-C`


Equating the coefficients of the like terms,


`A+B=0`    -------------------------(1)


`-B+C=0`  -----------------------(2)


`A-C=1`       -----------------------(3)


Now we have to solve the above three linear equations to get A, B and C,


From equation 1, `B=-A`


Substitute B in equation 2,


`-(-A)+C=0`


`=>A+C=0`    ---------------------(4)


Add equations 3 and 4,


`2A=1`


`=>A=1/2`


`B=-A=-1/2`


Plug in the value of A in equation 4,


`1/2+C=0`


`=>C=-1/2`


Plug in the values of A,B and C in the partial fraction template,


`1/((u^2+1)(u-1))=(1/2)/(u-1)+((-1/2)u+(-1/2))/(u^2+1)`


`=1/(2(u-1))-(1(u+1))/(2(u^2+1))`


`=1/2[1/(u-1)-(u+1)/(u^2+1)]`


`int1/((u^2+1)(u-1))du=int1/2[1/(u-1)-(u+1)/(u^2+1)]du`


Take the constant out,


`=1/2int(1/(u-1)-(u+1)/(u^2+1))du`


Apply the sum rule,


`=1/2[int1/(u-1)du-int(u+1)/(u^2+1)du]`


`=1/2[int1/(u-1)du-int(u/(u^2+1)+1/(u^2+1))du]`


Apply the sum rule for the second integral,


`=1/2[int1/(u-1)du-intu/(u^2+1)du-int1/(u^2+1)du]` ------------------(1)


Now let's evaluate each of the above three integrals separately,


`int1/(u-1)du`


Apply integral substitution:`v=u-1`


`dv=du`


`=int1/vdv`


Use the common integral:`int1/xdx=ln|x|`


`=ln|v|`


Substitute back `v=u-1`


`=ln|u-1|`    -------------------------------------------(2)


`intu/(u^2+1)du`


Apply integral substitution:`v=u^2+1`


`dv=2udu`


`int1/v(dv)/2`


Take the constant out and use standard integral:`int1/xdx=ln|x|`


`=1/2ln|v|`


Substitute back `v=u^2+1`


`=1/2ln|u^2+1|`    ----------------------------------------(3)


`int1/(u^2+1)du`


Use the common integral:`int1/(x^2+a^2)dx=1/aarctan(x/a)`


`=arctan(u)`  ------------------------------------------(4)


Put the evaluation(2 , 3 and 4) of all the three integrals in (1) ,


`=1/2[ln|u-1|-1/2ln|u^2+1|-arctan(u)]`


Substitute back `u=e^x` and add a constant C to the solution,


`=1/2[ln|e^x-1|-1/2ln|e^(2x)+1|-arctan(e^x)]+C`


No comments:

Post a Comment