Wednesday, 15 January 2014

`int_2^3 (2x-3)/sqrt(4x-x^2) dx` Find or evaluate the integral by completing the square

Recall  that `int_a^b f(x) dx = F(x)|_a^b` :

`f(x)` as the integrand function


`F(x) ` as the antiderivative of `f(x)`


"a" as the lower boundary value of x


"b" as the upper boundary value of x


To evaluate the given problem: `int_2^3 (2x-3)/sqrt(4x-x^2)dx` , we need to determine the


 indefinite integral F(x)  of the integrand: `f(x)=(2x-3)/sqrt(4x-x^2)` .


We apply completing the square on `4x-x^2` .


Factor out `(-1)`  from `4x-x^2` to get `(-1)(x^2-4x)`


The `x^2-4x` or `x^2-4x+0` resembles `ax^2+bx+c` where:


`a= 1` and `b =-4` that we can plug-into `(-b/(2a))^2` .


`(-b/(2a))^2= (-(-4)/(2*1))^2`


              `= (4/2)^2`


              ` = 2^2`


              ` =4`


To complete the square, we add and subtract 4 inside the ():


`(-1)(x^2-4x) =(-1)(x^2-4x+4 -4)`


Distribute (-1) in "-4" to move it outside the ().


`(-1)(x^2-4x+4 -4) =(-1)(x^2-4x+4) + (-1)(-4)`


                          `=(-1)(x^2-4x+4) + 4`


Apply factoring for the perfect square trinomial: `x^2-4x+4 = (x-2)^2`


`(-1)(x^2-4x+4) + 4 =-(x-2)^2 + 4`


                                     ` = 4-(x-2)^2`



which means `4x-x^2=4-(x-2)^2`


Applying it to the integral:


`int_2^3 (2x-3)/sqrt(4x-x^2)dx =int_2^3 (2x-3)/sqrt(4-(x-2)^2)dx`


To solve for the indefinite integral of `int (2x-3)/sqrt(4-(x-2)^2)du` ,


let `u =x-2` then `x = u+2` and `du= dx` .


Apply u-substitution , we get:


`int (2x-3)/sqrt(4-(x-2)^2)dx= int (2(u+2)-3)/sqrt(4-u^2)du`


                             `=int (2u+4-3)/sqrt(4-u^2)du`


                             `=int (2u+1)/sqrt(4-u^2)du`


 Apply the basic integration property: `int (u+v) dx = int (u) dx + int (v) dx` .  


  `int (2u+1)/sqrt(4-u^2)du =int (2u)/sqrt(4-u^2)du +int1/sqrt(4-u^2)du`


For the integration of the first term: `int (2u)/sqrt(4-u^2)du` ,


let `v = 4-u^2` then `dv = -2u du` or `-dv = 2u du` then it becomes:


`int (2u)/sqrt(4-u^2)du =int (-1)/sqrt(v)dv`


Applying radical property: `sqrt(x) = x^(1/2)` and  Law of exponent: `1/x^n = x^-n` , we get:


`(-1)/sqrt(v) =(-1)/v^(1/2)`



Then,


`int (-1)/sqrt(v)dv =int(-1)v^(-1/2) dv`


Applying Power Rule of integration: `int x^n dx = x^(n+1)/(n+1)`


`int (-1)v^(-1/2) dv = (-1)v^(-1/2+1)/(-1/2+1)`


                         `=(-1)v^(1/2)/(1/2)`


                        `=(-1)v^(1/2)*(2/1)`


                         `=-2v^(1/2)`


                         `= -2sqrt(v)`


Recall `v =4-u^2 then-2sqrt(v)=-2sqrt(4-u^2)` .


Then,


`int (2u)/sqrt(4-u^2)du =-2sqrt(4-u^2)`



For the integration of the second term:  `int1/sqrt(4-u^2)du` ,


 we apply the basic integration formula for inverse sine function:


`int 1/sqrt(a^2-u^2) du = arcsin(u/a)`


Then,


`int1/sqrt(4-u^2)du=int1/sqrt(2^2-u^2)du`


                    `= arcsin(u/2)`


 For the complete indefinite integral, we combine the results as:


`int (2u+1)/sqrt(4-u^2)du =-2sqrt(4-u^2) +arcsin(u/2)`


 Then plug-in `u=x-2` to express it terms of x, to solve for `F(x)` .


`F(x) =-2sqrt(4-(x-2)^2) +arcsin((x-2)/2)`


For the definite integral, we applying the boundary values: `a=2` and `b=3` in `F(x)|_a^b= F(b) - F(a)` .


`F(3) -F(2) = [-2sqrt(4-(3-2)^2) +arcsin((3-2)/2)] -[-2sqrt(4-(2-2)^2) +arcsin((2-2)/2)]`


       `=[-2sqrt(4-(1)^2) +arcsin(1/2)] -[-2sqrt(4-(0)^2) +arcsin(0/2)]`


        `=[-2sqrt(3) +arcsin(1/2)] -[-2sqrt(4) +arcsin(0)]`


         ` =[-2sqrt(3) +pi/6] -[-2*(2)+0]`


        `=[-2sqrt(3) +pi/6] -[-4]`


         `=-2sqrt(3) +pi/6 + 4`

No comments:

Post a Comment