Thursday, 20 March 2014

`2xy' - ln(x^2) = 0 , y(1) = 2` Find the particular solution that satisfies the initial condition

The problem: `2xy'-ln(x^2)=0 ` is as first order ordinary differential equation that we can evaluate by applying variable separable differential equation:


`N(y)y'=M(x)`


`N(y)(dy)/(dx)=M(x)`


`N(y) dy=M(x) dx`


Apply direct integration:` intN(y) dy= int M(x) dx` to solve for the


 general solution of a differential equation.


Then, `2xy'-ln(x^2)=0` will be rearrange in to `2xy'= ln(x^2)`


Let `y' = (dy)/(dx)` , we get: `2x(dy)/(dx)= ln(x^2)`


or`2x(dy)= ln(x^2)(dx)`


Divide both sides by `x` to express in a form of `N(y) dy=M(x) dx`...

The problem: `2xy'-ln(x^2)=0 ` is as first order ordinary differential equation that we can evaluate by applying variable separable differential equation:


`N(y)y'=M(x)`


`N(y)(dy)/(dx)=M(x)`


`N(y) dy=M(x) dx`


Apply direct integration:` intN(y) dy= int M(x) dx` to solve for the


 general solution of a differential equation.


Then, `2xy'-ln(x^2)=0` will be rearrange in to `2xy'= ln(x^2)`


Let `y' = (dy)/(dx)` , we get: `2x(dy)/(dx)= ln(x^2)`


or`2x(dy)= ln(x^2)(dx)`


Divide both sides by `x` to express in a form of `N(y) dy=M(x) dx` :


`(2xdy)/x= (ln(x^2)dx)/x`


`2dy= (ln(x^2)dx)/x`


Applying direct integration, we will have:


`int 2dy= int (ln(x^2)dx)/x`


For the left side, recall `int dy = y` then `int 2dy = 2y`


For the right side, we let `u =x^2` then `du =2x dx` or `dx=(du)/(2x)` .


`int (ln(x^2))/xdx=int (ln(u))/x*(du)/(2x)`


                    ` =int (ln(u)du)/(2x^2)`


                    ` =int (ln(u)du)/(2u) `


                    ` =1/2 int ln(u)/u du`



Let `v=ln(u)` then `dv = 1/udu` ,we get:


`1/2 int ln(u)/u du=1/2 int v* dv`


Applying the Power Rule of integration: `int x^n dx = x^(n+1)/(n+1)+C`


`1/2 int v* dv= 1/2 v^(1+1)/(1+1)+C`


                    `= 1/2*v^2/2+C`


                   `=1/4v^2+C`


Recall `v = ln(u)` and `u = x^2` then `v =ln(x^2)` .


The integral will be:


`int (ln(x^2))/xdx=1/4(ln(x^2))^2 +C or(ln(x^2))^2 /4+C`


Combing the results from both sides, we get the general solution of the differential equation as:


`2y = (ln(x^2))^2 /4+C`


or `y =(ln(x^2))^2 /8+C`



To solve for the arbitary constant (C), we consider the initial condition `y(1)=2` 


When we plug-in the values, we get:


`2 =(ln(1^2))^2 /8+C`


`2 =0/8+C`


`2=0+C`


then `C=2`


.Plug-in `C=2` on the general solution: `y =(ln(x^2))^2 /8+C` , we get the


particular solution as:


`y =(ln(x^2))^2 /8+2`

No comments:

Post a Comment