Friday, 28 March 2014

`int_-1^2(x^3 - 2x)dx` Evaluate the integral.

You need to evaluate the integral, such that:


`int_(-1)^2(x^3 - 2x)dx = int_(-1)^2 x^3 dx - int_(-1)^2 2x dx`


`int_(-1)^2(x^3 - 2x)dx = (x^4/4 - x^2)|_(-1)^2`


`int_(-1)^2(x^3 - 2x)dx = (2^4/4 - 2*2 - (-1)^4/4 - 2)`


`int_(-1)^2(x^3 - 2x)dx = 4 - 4 -1/4 - 2`


`int_(-1)^2(x^3 - 2x)dx = -9/4`


Hence evauating the definite integral yields `int_(-1)^2(x^3 - 2x)dx = -9/4.`

You need to evaluate the integral, such that:


`int_(-1)^2(x^3 - 2x)dx = int_(-1)^2 x^3 dx - int_(-1)^2 2x dx`


`int_(-1)^2(x^3 - 2x)dx = (x^4/4 - x^2)|_(-1)^2`


`int_(-1)^2(x^3 - 2x)dx = (2^4/4 - 2*2 - (-1)^4/4 - 2)`


`int_(-1)^2(x^3 - 2x)dx = 4 - 4 -1/4 - 2`


`int_(-1)^2(x^3 - 2x)dx = -9/4`


Hence evauating the definite integral yields `int_(-1)^2(x^3 - 2x)dx = -9/4.`

No comments:

Post a Comment