Wednesday, 19 March 2014

What is the limit of (1+1/x)^(x+1/x) as x -> infinity ?


This is an interesting limit. Lets define a variable y as:


`y=lim_(x->oo) (1+1/x)^(x+1/x)`


Lets take the logarithm of both sides.


`ln(y)=lim_(x->oo) ln[(1+1/x)^(x+1/x)]`


`ln(y)=lim_(x->oo) (x+1/x) ln(1+1/x)`


Now I am going to make a quick substitution in the logarithm on the right hand side.


`u=1/x`


`ln(y)=lim_(x->oo) (x+1/x) ln(1+u)`


Now I will use a common taylor expansion, `ln(1+u)=sum_(n=0)^oo (-1)^(n-1)*(u^n)/n=u-1/2u^2+1/3u^3-...`


`ln(y)=lim_(x->oo) (x+1/x) ln(1+u)`


`ln(y)=lim_(x->oo) (x+1/x) (u-1/2u^2+1/3u^3-...)`


Back substitute in to get in terms of x.


`ln(y)=lim_(x->oo) (x+1/x) (1/x-1/(2x^2)+1/(3x^3)-...)`


`ln(y)=lim_(x->oo)...



This is an interesting limit. Lets define a variable y as:


`y=lim_(x->oo) (1+1/x)^(x+1/x)`


Lets take the logarithm of both sides.


`ln(y)=lim_(x->oo) ln[(1+1/x)^(x+1/x)]`


`ln(y)=lim_(x->oo) (x+1/x) ln(1+1/x)`


Now I am going to make a quick substitution in the logarithm on the right hand side.


`u=1/x`


`ln(y)=lim_(x->oo) (x+1/x) ln(1+u)`


Now I will use a common taylor expansion, `ln(1+u)=sum_(n=0)^oo (-1)^(n-1)*(u^n)/n=u-1/2u^2+1/3u^3-...`


`ln(y)=lim_(x->oo) (x+1/x) ln(1+u)`


`ln(y)=lim_(x->oo) (x+1/x) (u-1/2u^2+1/3u^3-...)`


Back substitute in to get in terms of x.


`ln(y)=lim_(x->oo) (x+1/x) (1/x-1/(2x^2)+1/(3x^3)-...)`


`ln(y)=lim_(x->oo) [x (1/x-1/(2x^2)+1/(3x^3)-...)+1/x(1/x-1/(2x^2)+1/(3x^3)-...)]`


`ln(y)=lim_(x->oo) [(1-1/(2x)+1/(3x^2)-...)+(1/x^2-1/(2x^3)+1/(3x^4)-...)]`


Now take the limit, every term that has an x in the denominator will go to zero leaving just one term.


`ln(y)=1`


Give both sides a new base e


`e^ln(y)=e^1`


`y=e`


Remember our original definition of y.


`y=lim_(x->oo) (1+1/x)^(x+1/x)=e`


This limit is equal to e.


No comments:

Post a Comment