Wednesday, 30 April 2014

Find the centroid of the region bounded by the graphs of `y=b/asqrt(a^2-x^2)` and `y=0`

Given curves are ,

`y=(b/a)sqrt(a^2-x^2) , y=0`



let `f(x) =(b/a)sqrt(a^2-x^2)`



and `g(x)=0`


In order to find the Centroid of the region bounded by the curves ,


first we have to find the area bounded by the curves ,so ,


now in order to find the area , we have to find the intersecting points of the curves. This can be obtained by equating f(x) and g(x) .


=>` f(x) = g(x)`


=> `(b/a)sqrt(a^2-x^2) =0`


=> `sqrt(a^2-x^2) =0`


=> `x^2 = a^2`


=> `x= +-a`---------(1)


so the curves `f(x)>=g(x) on [-a, a]`


so the area `= int _a ^b [f(x) -g(x)]dx` where the lower bound is -a, and the upper bound is a


`= int _-a ^a [(b/a)sqrt(a^2 - x^2) -0]dx`


`=int_-a^a[(b/a)sqrt(a^2 - x^2)]dx`


The function which is being integrated is an even function so,


=`2int_0^a[(b/a)sqrt(a^2 - x^2)]dx`


=`2(b/a) int_0^a[sqrt(a^2 - x^2)]dx`




let `x=a sin(theta)` ------(2)


so , `dx = a cos(theta) d(theta)`


but from (1) and (2) we get


`x=+-a , x= asin(theta)` is


`sin(theta) = +-1`


=> `theta = sin^(-1) (+-1)`


so` theta = +-(pi/2)`


so ,now with the new integrals we get


area` = 2(b/a) int_0^a[sqrt(a^2 - x^2)]dx`


  = `2(b/a) int_(0) ^(pi/2) sqrt(a^2 - a^2 sin^2 (theta)) a cos(theta) d(theta)`


  = `2(b/a) int_(0) ^(pi/2) sqrt(a^2(1 - sin^2 (theta))) a cos(theta) d(theta)`


  =`2(b/a) int_(0) ^(pi/2) sqrt(a^2( cos^2 (theta))) a cos(theta) d(theta)`


  =`2(b/a) int_(0) ^(pi/2) (a cos (theta)) a cos(theta) d(theta)`


  =`2(b/a)int_(0) ^(pi/2) (acos (theta))^2 d(theta)`


  =`2(b/a)(a^2)int_(0) ^(pi/2) (cos^2 (theta)) d(theta)`


we can right the above integral as


  =`(2)(b/a) (a^2)int_0 ^(pi/2) (cos^2 (theta)) d(theta)`


  as we know that `int cos^2(x) dx = (1/2)(x+(1/2)sin (2x))`


now ,


area = `(2)(b/a) (a^2)int_0 ^(pi/2) (cos^2 (theta)) d(theta)`


=`(2)(b/a) (a^2) [(1/2)(x+(1/2)sin (2x))]_0 ^(pi/2)`


 = `2(b/a)(a^2)[((1/2)((pi/2)+(1/2)sin (2(pi/2))))-(1/2)((0)+(1/2)sin (2(0)))]`


=`2(b/a)(a^2)[((1/2)((pi/2)+(0)))-0]`


=`2(b/a) a^2 [pi/4]`


=` ((pi a^2)/2)*(b/a)`


=`(pi*a*b)/(2)`


Now the centroid of the region bounded the curves is given as ,


let `(x_1,y_1)` be the co- ordinates of the centroid so ,


`x_1` is given as


`x_1 = (1/(area)) int _a^b x[f(x)-g(x)] dx`


  where the limits  `a= -a , b= a`


so,


`x_1 = (1/(area)) int _-a^a x[((b/a)sqrt(a^2-x^2))-(0)] dx`


=`(1/((pi*a*b)/2)) int _-a^a x[((b/a)sqrt(a^2-x^2))] dx`


=`(2/((pi*a*b))) int _-a^a x[((b/a)sqrt(a^2-x^2))] dx`



let` u = a^2 -x^2 => du = -2x dx`


`(-1/2)du = xdx`


The bounds are then `u = a^2 - (a^2) = 0` and `u=a^2-(-a)^2 = 0`


so, 


`= (2/((pi*a*b))) int _0^0 [((b/a)sqrt(a^2-x^2))] dx`


`= 0` since for `int_a^b g(u) du = G(a) - G(b)` it follows that `int_0^0 g(u) du = G(0) - G(0) = 0`  


so, `x_1 = 0`



and now let us `y_1` and so ,


`y_1` is given as


`y_1 = (1/(area)) int _a^b (1/2) [f^2(x)-g^2(x)] dx`


    where the `a= -a , b= a`


so ,


= `(1/((pi*a*b)/(2))) int _-a ^a (1/2)[((b/a)sqrt(a^2 -x^2))^2 -[0]^2] dx`


= `(2/((pi*a*b))) int _-a ^a (1/2)[((b/a)sqrt(a^2 -x^2))^2] dx`


= `(2/((pi*a*b))) (1/2) int _-a ^a [((b/a)sqrt(a^2 -x^2))^2] dx`


= `(1/((pi*a*b)))  int _-a ^a [((b/a)sqrt(a^2 -x^2))^2] dx`


= `(1/((pi*a*b)))(b/a)^2  int _-a ^a [(sqrt(a^2 -x^2))^2] dx`


since the function which is being integrated is even function so ,we can write the above equation as


= `(2/((pi*a*b)))(b/a)^2  int _0 ^a [(sqrt(a^2 -x^2))^2] dx`


= `(2/((pi*a*b)))(b/a)^2  int _0 ^a [(a^2 -x^2)] dx`


= `(2/((pi*a*b)))(b/a)^2   [((a^2)x -(x^3)/3)]_0 ^a`


= `(2/((pi*a*b)))(b/a)^2   [[((a^2)a -(a^3)/3)]-[((0^2)a -(0^3)/3)]]`


= `(2/((pi*a*b)))(b/a)^2   [[((a^2)a -(a^3)/3)]-[0]]`


= `(2/((pi*a*b)))(b/a)^2   [((a^3) -(a^3)/3)]`


= `(2/((pi*a*b)))(b/a)^2 [ (2*(a^3))/3)]`


= `(2/((pi*b)))(b)^2 [ (2)/3]`


= `(2/((pi)))(b) [ (2)/3]`


=`((4b)/(3pi)) `


so the centroid of the area bounded by the curves is


= `(x_1,y_1)= (0,(4b)/(3pi))`

No comments:

Post a Comment