Thursday, 10 April 2014

`int x^2/sqrt(36-x^2) dx` Find the indefinite integral

Given


`int x^2/sqrt(36-x^2) dx`


This can be solved by using the Trigonometric substitutions  (Trig substitutions)


when the integral contains `sqrt(a-bx^2)` then we have to take


`x=sqrt(a/b) sin(t)` in order to solve the integral easily



so here , For


`int x^2/sqrt(36-x^2) dx`


`x` is given as


`x= sqrt(36/1) sin(t) = 6sin(t) `


=> `dx = 6 cos(t) dt`


so ,


`int x^2/sqrt(36-x^2) dx`


=`int (6sin(t))^2/sqrt(36-(6sin(t))^2) (6 cos(t) dt)`


= `int 36(sin(t))^2/sqrt(36-(6sin(t))^2) (6 cos(t) dt)`


=`...

Given


`int x^2/sqrt(36-x^2) dx`


This can be solved by using the Trigonometric substitutions  (Trig substitutions)


when the integral contains `sqrt(a-bx^2)` then we have to take


`x=sqrt(a/b) sin(t)` in order to solve the integral easily



so here , For


`int x^2/sqrt(36-x^2) dx`


`x` is given as


`x= sqrt(36/1) sin(t) = 6sin(t) `


=> `dx = 6 cos(t) dt`


so ,


`int x^2/sqrt(36-x^2) dx`


=`int (6sin(t))^2/sqrt(36-(6sin(t))^2) (6 cos(t) dt)`


= `int 36(sin(t))^2/sqrt(36-(6sin(t))^2) (6 cos(t) dt)`


=` int ((36)*(6)(sin(t))^2 *cos(t)) /sqrt(36-(6sin(t))^2) dt`


=`int (216(sin(t))^2 *cos(t)) /sqrt(36-36(sin(t))^2) dt`


= `int (216(sin(t))^2 *cos(t)) /sqrt(36(1-(sin(t))^2)) dt`


=`int (216(sin(t))^2 *cos(t)) /sqrt(36(cos(t))^2) dt`


=`int (216(sin(t))^2 *cos(t)) /(6(cos(t))) dt`


= `int (216/6) sin^2(t) dt`


= `int 36 sin^2(t) dt`


= `36 int sin^2(t) dt`


= `36 int (1-cos(2t))/2 dt`


= `(36/2) int (1-cos(2t)) dt`


= `18 [int 1 dt - int cos(2t) dt]+c`


= `18[t- (1/2)sin(2t)]+c`


but we know that


`x= 6sin(t)`


=> `x/6 = sin (t)`


=> `t= sin^(-1) (x/6) or arcsin(x/6)`


so,


`18[t- (1/2)sin(2t)]+c`


= `18[(arcsin(x/6))- (1/2)sin(2(arcsin(x/6)))]+c`


so,


`int x^2/sqrt(36-x^2) dx `


=`18arcsin(x/6)- 9sin(2(arcsin(x/6)))+c`

No comments:

Post a Comment