Wednesday, 14 May 2014

`int_(pi/6)^pi(sin(theta))d theta` Evaluate the integral.


You need to evaluate the definite integral using the fundamental theorem of calculus such that `int_a^b f(x)dx = F(b) - F(a)`


`int_(pi/6)^pi sin theta d theta = -cos theta|_(pi/6)^pi`


`int_(pi/6)^pi sin theta d theta = -cos pi + cos (pi/6)`


`int_(pi/6)^pi sin theta d theta = 1 + sqrt3/2`


Hence, evaluating the definite integral yields


` int_(pi/6)^pi sin theta d theta = 1 + sqrt3/2.`





You need to evaluate the definite integral using the fundamental theorem of calculus such that `int_a^b f(x)dx = F(b) - F(a)`


`int_(pi/6)^pi sin theta d theta = -cos theta|_(pi/6)^pi`


`int_(pi/6)^pi sin theta d theta = -cos pi + cos (pi/6)`


`int_(pi/6)^pi sin theta d theta = 1 + sqrt3/2`


Hence, evaluating the definite integral yields


` int_(pi/6)^pi sin theta d theta = 1 + sqrt3/2.`




No comments:

Post a Comment