Saturday, 3 May 2014

`y' - y = e^xroot3(x)` Solve the Bernoulli differential equation.

Given ,


`y' - y = e^xroot3(x)` ----------(1)


this equation is already in linear form of first order ,so


this is of the form


`y' +Py=Q` ------------(2)


then the general solution `y=((int (I.F) (Q) dx)+c)/(I.F)`


where I.F is the integration function =` e^(int p dx)`



so on comapring the equations (1) and (2) we get,


`P =-1 ,  Q= e^xroot3(x)`



so the `I.F = e^(int p dx) = e^(int -1 dx)= e^(-x)`


now...

Given ,


`y' - y = e^xroot3(x)` ----------(1)


this equation is already in linear form of first order ,so


this is of the form


`y' +Py=Q` ------------(2)


then the general solution `y=((int (I.F) (Q) dx)+c)/(I.F)`


where I.F is the integration function =` e^(int p dx)`



so on comapring the equations (1) and (2) we get,


`P =-1 ,  Q= e^xroot3(x)`



so the `I.F = e^(int p dx) = e^(int -1 dx)= e^(-x)`


now the general solution is


`y=((int (I.F) *Q dx )+c)/(I.F)`


=>`y= ((int (e^(-x)) (e^xroot3(x)) dx)+c)/(e^(-x))`


 `= (int root3(x) dx + c)/e^(-x) `


`= ((x^(4/3))/(4/3) +c)/(e^(-x))`


`=((x^(4/3))/(4/3) +c)*e^(x)`


is the general solution.

No comments:

Post a Comment