Tuesday, 3 June 2014

`int e^x/(1-tan(e^x)) dx` Use integration tables to find the indefinite integral.

`inte^x/(1-tan(e^x))dx`


First, let's apply integral substitution:`u=e^x`


`=>du=e^xdx`


`=int1/(1-tan(u))du`


Now from the integration tables:


`int1/(1+-tan(u))du=1/2(u+-ln|cos(u)+-sin(u)|)+C`


Using the above,


`=1/2(u-ln|cos(u)-sin(u)|)+C`


Substitute back `u=e^x`


`=1/2(e^x-ln|cos(e^x)-sin(e^x)|)+C`


`inte^x/(1-tan(e^x))dx`


First, let's apply integral substitution:`u=e^x`


`=>du=e^xdx`


`=int1/(1-tan(u))du`


Now from the integration tables:


`int1/(1+-tan(u))du=1/2(u+-ln|cos(u)+-sin(u)|)+C`


Using the above,


`=1/2(u-ln|cos(u)-sin(u)|)+C`


Substitute back `u=e^x`


`=1/2(e^x-ln|cos(e^x)-sin(e^x)|)+C`


No comments:

Post a Comment