Sunday, 13 July 2014

`(1,40) , (3, 640)` Write an exponential function `y=ab^x` whose graph passes through the given points.

The given two points of the exponential function are (1,40) and (3,640).


To determine the exponential function 


`y=ab^x`


plug-in the given x and y values.


For the first point (1,40), plug-in x=1 and y=40.


`40=ab^1`


`40=ab`        (Let this be EQ1.)


For the second point (3,640), plug-in x=3 and y=640.


`640=ab^3`      (Let this be EQ2.)


To solve for the values of a and b, apply the substitution method of system of...

The given two points of the exponential function are (1,40) and (3,640).


To determine the exponential function 


`y=ab^x`


plug-in the given x and y values.


For the first point (1,40), plug-in x=1 and y=40.


`40=ab^1`


`40=ab`        (Let this be EQ1.)


For the second point (3,640), plug-in x=3 and y=640.


`640=ab^3`      (Let this be EQ2.)


To solve for the values of a and b, apply the substitution method of system of equations. To do so, isolate the a in EQ1.


`40=ab`


`40/b=a`


Plug-in this to EQ2.


`640=ab^3`


`640=(40/b)b^3`


And, solve for b.


`640=40b^2`


`640/40=b^2`


`16=b^2`


`+-sqrt16=b`


`+-4=b`


Take note that in exponential function `y=ab^x` , the b should be greater than zero `(bgt0)` . When `blt=0` , it is no longer an exponential function.


So, consider on the positive value of b which is 4.


Now that the value of b is known, plug-in it to EQ1.


`40=ab`


`40=a(4)`


And, solve for a.


`40/4=a`


`10=a`


Then, plug-in the values of a and b to the exponential function


`y=ab^x`


So this becomes:


`y= 10*4^x`


Therefore, the exponential function that passes the given two points is `y=10*4^x` .

No comments:

Post a Comment