Tuesday, 8 July 2014

`int sinx/(cosx+cos^2x) dx` Use substitution and partial fractions to find the indefinite integral

`intsin(x)/(cos(x)+cos^2(x))dx`


Apply integral substitution: `u=cos(x)`


`=>du=-sin(x)dx`


`=int1/(u+u^2)(-1)du`


Take the constant out,


`=-1int1/(u+u^2)du`


Now to compute the partial fraction expansion of a proper rational function, we have to factor out the denominator,


`=-1int1/(u(u+1))du`


Now let's create the partial fraction expansion,


`1/(u(u+1))=A/u+B/(u+1)`


Multiply the above equation by the denominator,


`=>1=A(u+1)+B(u)`


`1=Au+A+Bu`


`1=(A+B)u+A`


Equating the coefficients of the like terms,


`A+B=0`  ------------------(1)


`A=1`


Plug in the value of A in equation 1,


`1+B=0`


`=>B=-1`


Plug in the values of...

`intsin(x)/(cos(x)+cos^2(x))dx`


Apply integral substitution: `u=cos(x)`


`=>du=-sin(x)dx`


`=int1/(u+u^2)(-1)du`


Take the constant out,


`=-1int1/(u+u^2)du`


Now to compute the partial fraction expansion of a proper rational function, we have to factor out the denominator,


`=-1int1/(u(u+1))du`


Now let's create the partial fraction expansion,


`1/(u(u+1))=A/u+B/(u+1)`


Multiply the above equation by the denominator,


`=>1=A(u+1)+B(u)`


`1=Au+A+Bu`


`1=(A+B)u+A`


Equating the coefficients of the like terms,


`A+B=0`  ------------------(1)


`A=1`


Plug in the value of A in equation 1,


`1+B=0`


`=>B=-1`


Plug in the values of A and B in the partial fraction expansion,


`1/(u(u+1))=1/u+(-1)/(u+1)`


`=1/u-1/(u+1)`


`int1/(u(u+1))du=int(1/u-1/(u+1))du`


Apply the sum rule,


`=int1/udu-int1/(u+1)du` 


Now use the common integral:`int1/xdx=ln|x|`


`=ln|u|-ln|u+1|`


Substitute back `u=cos(x)`


`=ln|cos(x)|-ln|cos(x)+1|`


`intsin(x)/(cos(x)+cos^2(x))dx=-1{ln|cos|x|-ln|cos(x)+1|}`


Simplify and add a constant C to the solution,


`=ln|cos(x)+1|-ln|cos(x)|+C`


No comments:

Post a Comment