Friday, 22 August 2014

`int 1/((x-1)sqrt(4x^2-8x+3)) dx` Find the indefinite integral

`int1/((x-1)sqrt(4x^2-8x+3))dx`


Let's rewrite the integral by completing the square of the term in denominator,


`=int1/((x-1)sqrt((2x-2)^2-1))dx`


Apply the integral substitution: `u=2x-2`


`du=2dx`


`=>dx=(du)/2`


`u=2(x-1)`


`=>(x-1)=u/2`


`=int1/((u/2)sqrt(u^2-1))(du)/2`


`=int1/(usqrt(u^2-1))du`


Again apply integral substitution: `u=sec(v)`


`du=sec(v)tan(v)dv`


`=int1/(sec(v)sqrt(sec^2(v)-1))sec(v)tan(v)dv`


`=inttan(v)/(sqrt(sec^2(v)-1))dv`


Use the trigonometric identity:`sec^2(x)=1+tan^2(x)`


`=inttan(v)/sqrt(1+tan^2(v)-1)dv`


`=inttan(v)/sqrt(tan^2(v))dv`


`=inttan(v)/tan(v)dv`   assuming `tan(v) >=0`


`=intdv`


`=v`


Substitute back `v=arcsec(u)`  and  `u=(2x-2)`


and add a constant C to the solution,


`=arcsec(2x-2)+C`

`int1/((x-1)sqrt(4x^2-8x+3))dx`


Let's rewrite the integral by completing the square of the term in denominator,


`=int1/((x-1)sqrt((2x-2)^2-1))dx`


Apply the integral substitution: `u=2x-2`


`du=2dx`


`=>dx=(du)/2`


`u=2(x-1)`


`=>(x-1)=u/2`


`=int1/((u/2)sqrt(u^2-1))(du)/2`


`=int1/(usqrt(u^2-1))du`


Again apply integral substitution: `u=sec(v)`


`du=sec(v)tan(v)dv`


`=int1/(sec(v)sqrt(sec^2(v)-1))sec(v)tan(v)dv`


`=inttan(v)/(sqrt(sec^2(v)-1))dv`


Use the trigonometric identity:`sec^2(x)=1+tan^2(x)`


`=inttan(v)/sqrt(1+tan^2(v)-1)dv`


`=inttan(v)/sqrt(tan^2(v))dv`


`=inttan(v)/tan(v)dv`   assuming `tan(v) >=0`


`=intdv`


`=v`


Substitute back `v=arcsec(u)`  and  `u=(2x-2)`


and add a constant C to the solution,


`=arcsec(2x-2)+C`

No comments:

Post a Comment