Monday, 27 October 2014

`x=t^3-6t , y=t^2` Find the equations of the tangent lines at the point where the curve crosses itself.

The parametric equations are:


`x=t^3-6t`  ------------------(1)


`y=t^2`          -----------------(2)


From equation 2,


`t=+-sqrt(y)`


Substitute `t=sqrt(y)` in equation (1),


`x=(sqrt(y))^3-6sqrt(y)`


`=>x=ysqrt(y)-6sqrt(y)`  ----------------(3)


Now substitute `t=-sqrt(y)` in equation (1),


`x=-ysqrt(y)+6sqrt(y)`   ----------------(4)


The curve will cross itself at the point, where x and y values are same for different values of t.


So setting the equations 3 and 4 equal will give the point,


`ysqrt(y)-6sqrt(y)=-ysqrt(y)+6sqrt(y)`


`=>ysqrt(y)+ysqrt(y)=6sqrt(y)+6sqrt(y)`


`=>2ysqrt(y)=12sqrt(y)`


`=>2y=12`


`=>y=6`


Plug in the value of y...

The parametric equations are:


`x=t^3-6t`  ------------------(1)


`y=t^2`          -----------------(2)


From equation 2,


`t=+-sqrt(y)`


Substitute `t=sqrt(y)` in equation (1),


`x=(sqrt(y))^3-6sqrt(y)`


`=>x=ysqrt(y)-6sqrt(y)`  ----------------(3)


Now substitute `t=-sqrt(y)` in equation (1),


`x=-ysqrt(y)+6sqrt(y)`   ----------------(4)


The curve will cross itself at the point, where x and y values are same for different values of t.


So setting the equations 3 and 4 equal will give the point,


`ysqrt(y)-6sqrt(y)=-ysqrt(y)+6sqrt(y)`


`=>ysqrt(y)+ysqrt(y)=6sqrt(y)+6sqrt(y)`


`=>2ysqrt(y)=12sqrt(y)`


`=>2y=12`


`=>y=6`


Plug in the value of y in equation 4,


`x=-6sqrt(6)+6sqrt(6)`


`=>x=0`


So the curve crosses itself at the point (0,6). Note that,we can find this point by plotting the graph also. 


Now let's find t for this point,


`t=+-sqrt(y)=+-sqrt(6)`


The derivative `dy/dx` is the slope of the line tangent to the parametric graph `(x(t),y(t))`


`dy/dx=(dy/dt)/(dx/dt)`


`y=t^2`


`=>dy/dt=2t`


`x=t^3-6t`


`=>dx/dt=3t^2-6`


`dy/dx=(2t)/(3t^2-6)`


For `t=sqrt(6)` , `dy/dx=(2sqrt(6))/(3(sqrt(6))^2-6)=(2sqrt(6))/(18-6)=sqrt(6)/6`


Equation of the tangent line can be found by using point slope form of the line,


`y-6=sqrt(6)/6(x-0)`


`=>y=sqrt(6)/6x+6`


For `t=-sqrt(6)` , `dy/dx=(2(-sqrt(6)))/(3(-sqrt(6))^2-6)=(-2sqrt(6))/(18-6)=(-sqrt(6))/6`  


Equation of the tangent line will be:


`y-6=(-sqrt(6))/6(x-0)`


`=>y=(-sqrt(6))/6x+6`


Equations of the tangent line where the curve crosses itself are:


`y=sqrt(6)/6x+6`  and `y=-sqrt(6)/6x+6`

No comments:

Post a Comment