Saturday, 27 December 2014

`int (theta - csc(theta)cot(theta)) d theta` Find the general indefinite integral.

You need to evaluate the indefinite integral, such that:


`int f(theta)d theta = F(theta) + c`


`int (theta - csc theta* cot theta)d theta = int theta d theta - int (csc theta* cot theta)d theta`


Evaluating  integral int theta d theta, using the formula `int theta^n d theta = (theta^(n+1))/(n+1) + c` , yields:


`int theta d theta = (theta^2)/2 + c`


`int (csc theta* cot theta)d theta = int (1/(sin theta)* (cos theta)/(sin...

You need to evaluate the indefinite integral, such that:


`int f(theta)d theta = F(theta) + c`


`int (theta - csc theta* cot theta)d theta = int theta d theta - int (csc theta* cot theta)d theta`


Evaluating  integral int theta d theta, using the formula `int theta^n d theta = (theta^(n+1))/(n+1) + c` , yields:


`int theta d theta = (theta^2)/2 + c`


`int (csc theta* cot theta)d theta = int (1/(sin theta)* (cos theta)/(sin theta)) d theta`


You need to use substitution to solve the indefinite integral `int (csc theta* cot theta)d theta` , such that:


`sin theta = t => cos theta d theta = dt`


Replacing the variable, yields:


`int (dt)/(t^2) = int t^(-2) dt = -1/t + c`


Replacing back `sin theta` for t yields:


`int (csc theta* cot theta)d theta = -1/(sin theta) + c`


Gathering the results, yields:


`int (theta - csc theta* cot theta)d theta = (theta^2)/2 + 1/(sin theta) + c`


Hence, evaluating the indefinite integral yields `int (theta - csc theta* cot theta)d theta = (theta^2)/2 + 1/(sin theta) + c.`

No comments:

Post a Comment