Tuesday, 30 December 2014

`yy' - 2y^2 = e^x` Solve the Bernoulli differential equation.

Given equation is `yy'-2y^2=e^x`


=> `y' -2y=e^x y^(-1)`


An equation of the form `y'+Py=Qy^n`


is called the Bernoulli equation .


so, to proceed to solve this equation we have to transform the equation into a linear equation form of first order as follows


=>` y' (y^-n) +P y^(1-n)=Q`


let `u= y^(1-n)`


=> `(1-n)y^(-n)y'=u'`


=> `y^(-n)y' = (u')/(1-n)`


so ,


`y' (y^-n) +P y^(1-n)=Q`


=> `(u')/(1-n) +P u =Q `


so this equation is now of...

Given equation is `yy'-2y^2=e^x`


=> `y' -2y=e^x y^(-1)`


An equation of the form `y'+Py=Qy^n`


is called the Bernoulli equation .


so, to proceed to solve this equation we have to transform the equation into a linear equation form of first order as follows


=>` y' (y^-n) +P y^(1-n)=Q`


let `u= y^(1-n)`


=> `(1-n)y^(-n)y'=u'`


=> `y^(-n)y' = (u')/(1-n)`


so ,


`y' (y^-n) +P y^(1-n)=Q`


=> `(u')/(1-n) +P u =Q `


so this equation is now of the linear form of first order


Now,


From this equation ,


`y' -2y=e^x y^(-1)`


and


`y'+Py=Qy^n`


on comparing we get


`P=-2 Q=e^x , n=-1`


so the linear form of first order of the equation `y' -2y=e^x y^(-1) ` is given as



=> `(u')/(1-n) +P u =Q ` where `u= y^(1-n) =y^2`


=> `(u')/(1-(-1)) +(-2)u =e^x`


=> `(u')/2 -2u=e^x`


=> `(u')-4u = 2e^x`



so this linear equation is of the form


`u' + pu=q`


`p=-4 , q=2e^x`


so I.F (integrating factor ) = `e^(int p dx) = e^(int -4dx) = e^(-4x)`



and the general solution is given as


`u (I.F)=int q * (I.F) dx +c `


=> `u(e^(-4x))= int (2e^x) *(e^(-4x)) dx+c`


=> `u(e^(-4x))= int (2e^x) *(e^(-4x)) dx+c`


=> `u(e^(-4x))= 2 int (e^(-3x)) dx+c`


=>`u(e^(-4x))= 2 int (e^(-3x)) dx+c`


=>`u(e^(-4x))= 2 (1/(-3)*e^(-3x))+c`     as` int e^(ax) dx = 1/a e^(ax).`


=>`u(e^(-4x))= (-2/3)*e^(-3x)+c `


=> `u = ((-2/3)*e^(-3x)+c)/(e^(-4x))`


but `u= y^2` so ,


`y^2 = ((-2/3)*e^(-3x)+c)/(e^(-4x))`


`y= sqrt((-2/3e^(-3x)+c)/(e^(-4x)))`


=`sqrt((-2/3e^(-3x)+c)*(e^(4x)))`


= `sqrt((-2/3e^(x)+ce^(4x)))`


=`e^(x/2)sqrt((-2+3ce^(3x))/3)`


is the general solution.

No comments:

Post a Comment