Saturday, 24 January 2015

`(1,2) , (3,50)` Write an exponential function `y=ab^x` whose graph passes through the given points.

The given two points of the exponential function are (1,2) and (3,50).


To determine the exponential function


`y=ab^x`


plug-in the given x and y values.


For the first point (1,2), plug-in x=1 and y=2.


`2=ab^1`


`2=ab`          (Let this be EQ1.)


For the second point (3,50), plug-in x=3 and y=50.


`50=ab^3`       (Let this be EQ2.)


To solve for the values of a and b, apply substitution method of system of...

The given two points of the exponential function are (1,2) and (3,50).


To determine the exponential function


`y=ab^x`


plug-in the given x and y values.


For the first point (1,2), plug-in x=1 and y=2.


`2=ab^1`


`2=ab`          (Let this be EQ1.)


For the second point (3,50), plug-in x=3 and y=50.


`50=ab^3`       (Let this be EQ2.)


To solve for the values of a and b, apply substitution method of system of equations. To do so, isolate the a in EQ1.


`2=ab`


`2/b=a`


Plug-in this to EQ2.


`50=ab^3`


`50=(2/b)b^3`


And solve for b.


`50=2b^2`


`50/2=b^2`


`25=b^2`


`+-sqrt25=b`


`+-5=b`


Take note that in the exponential function `y=ab^x` , the b should be greater than zero `(bgt0)` . When `blt=0` , it is no longer an exponential function.


So consider only the positive value of b which is 5.


Then, plug-in b=5 to EQ1.


`2=ab`


`2=a(5)`


Isolate the a.


`2/5=a`


Then, plug-in `a=2/5` and `b=5` to


`y=ab^x`


So this becomes:


`y=2/5*5^x`


Therefore, the exponential function that passes the given two points is `y=2/5*5^x` .

No comments:

Post a Comment