Tuesday, 13 January 2015

`f(x)=4/(3x+2) , c=3` Find a power series for the function, centered at c and determine the interval of convergence.

To determine the power series centered at c, we may apply the formula for Taylor series:

`f(x) = sum_(n=0)^oo (f^n(c))/(n!) (x-c)^n`


or


`f(x) =f(c)+f'(c)(x-c) +(f''(c))/(2!)(x-c)^2 +(f^3(c))/(3!)(x-c)^3 +(f'^4(c))/(4!)(x-c)^4 +...`


To list the `f^n(x)` for the given function `f(x)=4/(3x+2)` centered at `c=2` , we may apply Law of Exponent: `1/x^n = x^-n`  and  Power rule for derivative: `d/(dx) x^n= n *x^(n-1)` .


`f(x) =4/(3x+2)`


     ` =4(3x+2)^(-1)`


Let `u =3x+2` then `(du)/(dx) = 3` .


`d/(dx) c*(3x+2)^n = c *d/(dx) (3x+2)^n`


                            `= c *(n* (3x+2)^(n-1)*3`


                            ` = 3cn(3x+2)^(n-1)`


`f'(x) =d/(dx) 4(3x+2)^(-1)`


          `=3*4*(-1) *(3x+2)^(-1-1)`


           `=-12(3x+2)^(-2) or 2/(3x+2)^2`


`f^2(x) =d/(dx) -12(3x+2)^(-2)`


           `=3*(-12)(-2)(3x+2)^(-2-1)`


          `=72(3x+2)^(-3) or 72/(3x+2)^3`


`f^3(x) =d/(dx) 72(3x+2)^(-3)`


           `=3*(72)(-3)(3x+2)^(-3-1)`


           `=-648(3x+2)^(-4) or -648/(3x+2)^4`


Plug-in `x=3` for each `f^n(x)` , we get:


`f(3)=4/(3(3)+2)`


        `=4/ 11`


`f'(3)=-12/(3(3)+2)^2`


          `=-12/11^2`


          `= -12/121`


`f^2(3)=72/(3(3)+2)^3 `


           `=72/11^3`


           `=72/1331`


`f^3(3)=-648/(3(3)+2)^4 `


           `=-648/11^4`


           `= -648/14641`


Plug-in the values on the formula for Taylor series, we get:


`4/(3x+2)= sum_(n=0)^oo (f^n(3))/(n!) (x-3)^n`


` = sum_(n=0)^oo (f^n(3))/(n!) (x-3)^n`


` =4/11+(-12/121)(x-3) +(72/1331)/(2!)(x-3)^2 +(-648/14641)/(3!)(x-3)^3 +...`


` =4/11-(12/121)(x-3) +(72/1331)/2(x-3)^2 - (648/14641)/6(x-3)^3 +...`


` =4/11-12/121(x-3) +36/1331(x-3)^2 -108/14641(x-3)^3 +...`


` = sum_(n=1)^oo 4(-3(x-3))^(n-1)/11^n`


` = sum_(n=1)^oo 4(-3(x-3))^(-1)(-3(x-3))^n/11^n`


` = sum_(n=1)^oo 4/(-3(x-3))((-3(x-3))/11)^n`


` =sum_(n=1)^oo 4/(-3x+9)((-3(x-3))/11)^n`


To determine the interval of convergence, we may apply geometric series test wherein the series `sum_(n=0)^oo a*r^n`  is convergent if `|r|lt1 or -1 ltrlt 1` . If `|r|gt=1` then the geometric series diverges.


By comparing  `sum_(n=1)^oo 4/(-3x+9)((-3(x-3))/11)^n` with `sum_(n=0)^oo a*r^n` , we determine: `r = (-3(x-3))/11` .


Apply the condition for convergence of geometric series: `|r|lt1` .


`|(-3(x-3))/11|lt1`


`|-1|*|(3(x-3))/11|lt1`


`1*|(3(x-3))/11|lt1`


`|(3(x-3))/11|lt1`


`|(3x-9)/11|lt1`


`-1lt(3x-9)/11lt1`


Multiply each sides by `11` :


`-1*11lt(3x-9)/11*11lt1*11`


`-11lt3x-9lt11`


Add 9 on each sides:


`-11+9lt3x-9+9lt11+9`


`-2lt3xlt20`


Divide each side by `3` :


`-2/3lt(3x)/3lt20/3`



`-2/3ltxlt20/3 `


Thus, the power series  of the function `f(x) =4/(3x+2)` centered at `c=3` is `sum_(n=1)^oo 4/(-3x+9)((-3(x-3))/11)^n`


 with an interval of convergence: `-2/3ltxlt20/3` .

No comments:

Post a Comment