Wednesday, 11 February 2015

`sum_(n=2)^oo 1/(nsqrt(n^2-1))` Determine the convergence or divergence of the series.

To evaluate the given series `sum_(n=2)^oo 1/(nsqrt(n^2-1))` , we may apply Integral test to determine the convergence or divergence of the series.


Recall Integral test is applicable if f is a positive and decreasing function on interval `[k,oo)` where `kgt=1` and `a_n=f(x)` .


If `int_k^oo f(x) dx` is convergent then the series `sum_(n=k)^oo a_n` is also convergent.


If `int_k^oo f(x) dx` is divergent then the series `sum_(n=k)^oo a_n` is also divergent.


For the  series `sum_(n=2)^oo 1/(nsqrt(n^2-1))`...

To evaluate the given series `sum_(n=2)^oo 1/(nsqrt(n^2-1))` , we may apply Integral test to determine the convergence or divergence of the series.


Recall Integral test is applicable if f is a positive and decreasing function on interval `[k,oo)` where `kgt=1` and `a_n=f(x)` .


If `int_k^oo f(x) dx` is convergent then the series `sum_(n=k)^oo a_n` is also convergent.


If `int_k^oo f(x) dx` is divergent then the series `sum_(n=k)^oo a_n` is also divergent.


For the  series `sum_(n=2)^oo 1/(nsqrt(n^2-1))` , we have `a_n=1/(nsqrt(n^2-1))` then we may let the function:


`f(x) =1/(xsqrt(x^2-1))`


The graph of the function is: 


As shown on the graph, f(x) is positive and decreasing on the interval `[2,oo)` . This confirms we may apply the Integral test to determine the converge or divergence of a series as:


`int_2^oo1/(xsqrt(x^2-1)) dx= lim_(t-gtoo)int_2^t1/(xsqrt(x^2-1))dx`


To determine the indefinite integral of `int_2^t1/(xsqrt(x^2-1))dx` , we may apply the integral formula for rational function with root as:


`int 1/(usqrt(u^2-a^2))du= 1/a *arcsec(u/a)+C` .


By comparing " `1/(xsqrt(x^2-1))` " with "`1/(usqrt(u^2-a^2))` ", we determine the corresponding values as: u=x and a=1.Applying the integral formula, we get:


`int_2^t1/(xsqrt(x^2-1))dx =1/1 *arcsec(x/1)|_2^t `          


                        ` =arcsec(x)|_2^t `


Applying definite integral formula: `F(x)|_a^b = F(b)-F(a)` 


`arcsec(x)|_2^t =arcsec(t) -arcsec(2)`


Applying `int_2^t1/(xsqrt(x^2-1))dx = arcsec(t) -arcsec(2)` , we get:


`lim_(t-gtoo)int_2^t1/(xsqrt(x^2-1))dx =lim_(t-gtoo)[arcsec(t) -arcsec(2)]`


                                 ` =lim_(t-gtoo)arcsec(t) -lim_(t-gtoo)arcsec(2)`


                                 ` = pi/2 -arcsec(2)`


                                 ` =pi/6`


The `lim_(t->oo)int_2^t 1/(xsqrt(x^2-1))dx =pi/6` implies that the integral converges.


 Conclusion: The integral `int_2^oo1/(xsqrt(x^2-1)) dx`  is convergent therefore the series `sum_(n=2)^oo 1/(nsqrt(n^2-1))` must also be convergent.

No comments:

Post a Comment