Sunday, 8 March 2015

`int 2 / sqrt(-x^2+4x) dx` Find or evaluate the integral by completing the square

To evaluate the given integral:` int 2/sqrt(-x^2+4x)dx` , we  may apply the basic integration property: `int c*f(x)dx= c int f(x)dx` .


The integral becomes:


`2 int dx/sqrt(-x^2+4x)`


We complete the square for the expression `(-x^2+4x)` .


Completing the square:


For the first step, factor out (-1): `(-x^2+4x) = (-1)(x^2-4x) or -(x^2-4x)`


The `x^2 -4x ` or `x^-4x+0` resembles the `ax^2+bx+c ` where:


`a=1` , `b =-4` and `c=0` .


To complete the square, we add...

To evaluate the given integral:` int 2/sqrt(-x^2+4x)dx` , we  may apply the basic integration property: `int c*f(x)dx= c int f(x)dx` .


The integral becomes:


`2 int dx/sqrt(-x^2+4x)`


We complete the square for the expression `(-x^2+4x)` .


Completing the square:


For the first step, factor out (-1): `(-x^2+4x) = (-1)(x^2-4x) or -(x^2-4x)`


The `x^2 -4x ` or `x^-4x+0` resembles the `ax^2+bx+c ` where:


`a=1` , `b =-4` and `c=0` .


To complete the square, we add and subtract `(-b/(2a))^2` .


Using `a=1` and `b=-4` , we get:


`(-b/(2a))^2 =(-(-4)/(2(1)))^2`


              `=(4/2)^2`


              ` = 2^2`


              `=4`


Add and subtract 4 inside the` (x^2-4x)` :


`-(x^2-4x+4 -4)`


Distribute the negative sign on -4 to rewrite it as:


`-(x^2-4x+4) +4`


Factor the perfect square trinomial: `x^2-4x+4 = (x-2)^2` .


`-(x-2)^2 +4`



For the original problem, we let: `-x^2+4x=-(x-2)^2 +4` :


`2 int dx/sqrt(-x^2+4x)=2 int dx/sqrt(-(x-2)^2+4)`


It can also be rewritten as:


`2 int dx/sqrt(-(x-2)^2 +2^2) =2 int dx/sqrt(2^2 -(x-2)^2)`


The integral part resembles the integral formula:


`int (du)/sqrt(a^2-u^2) = arcsin(u/a)+C` .


Applying the formula, we get:


`2 int dx/sqrt(2^2 -(x-2)^2) =2 *(arcsin (x-2)/2) +C`


 Then the indefinite integral :


`int 2/sqrt(-x^2+4x)dx = 2arcsin((x-2)/2)+C`


No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...