Saturday, 11 April 2015

`int_0^2(y - 1)(2y + 1)dy` Evaluate the integral.

`int_0^2 (y-1)(2y+1)dy`


Before evaluating, expand the integrand.


`=int_0^2 (2y^2+y-2y-1)dy`


`=int_0^2(2y^2-y-1)dy`


Then, apply the integral formulas `int x^n dx=x^(n+1)/(n+1)` and `int cdx = cx` .


`=((2y^3)/3-y^2/2-y)|_0^2`


Then, plug-in the limits of  the integral to the resulting function.


`= ((2(2)^3)/3-2^2/2-2)-((2(0)^3)/3-0^2/2-0)`


`=(16/3-4/2-2)-0`


`=16/3-2-2`


`=16/3-4`


`=16/3-12/3`


`=4/3`


Therefore, `int_0^2 (y-1)(2y+1)dy = 4/3` .

`int_0^2 (y-1)(2y+1)dy`


Before evaluating, expand the integrand.


`=int_0^2 (2y^2+y-2y-1)dy`


`=int_0^2(2y^2-y-1)dy`


Then, apply the integral formulas `int x^n dx=x^(n+1)/(n+1)` and `int cdx = cx` .


`=((2y^3)/3-y^2/2-y)|_0^2`


Then, plug-in the limits of  the integral to the resulting function.


`= ((2(2)^3)/3-2^2/2-2)-((2(0)^3)/3-0^2/2-0)`


`=(16/3-4/2-2)-0`


`=16/3-2-2`


`=16/3-4`


`=16/3-12/3`


`=4/3`


Therefore, `int_0^2 (y-1)(2y+1)dy = 4/3` .

No comments:

Post a Comment