Wednesday, 12 August 2015

`dT + k(T-70)dt = 0 , T(0) = 140` Find the particular solution that satisfies the initial condition

Given the differential equation : `dT+K(T-70)dt=0, T(0)=140`


We have to find a particular solution that satisfies the initial condition.



We can write,


`dT=-K(T-70)dt`


`\frac{dT}{T-70}=-Kdt`


`\int \frac{dT}{T-70}=\int -Kdt`


`ln(T-70)=-Kt+C`  where C is a constant.


Now,


`T-70=e^{-Kt+C}`


         `=e^{-Kt}.e^{C}`


         `=C'e^{-Kt}`    where `e^C=C'` is again a constant.


Hence we have,


`T=70+C'e^{-Kt}`


Applying the initial condition we get,


`140=70+C' ` implies `C'=70`


Therefore we have the solution:


`T=70(1+e^{-Kt})`

Given the differential equation : `dT+K(T-70)dt=0, T(0)=140`


We have to find a particular solution that satisfies the initial condition.



We can write,


`dT=-K(T-70)dt`


`\frac{dT}{T-70}=-Kdt`


`\int \frac{dT}{T-70}=\int -Kdt`


`ln(T-70)=-Kt+C`  where C is a constant.


Now,


`T-70=e^{-Kt+C}`


         `=e^{-Kt}.e^{C}`


         `=C'e^{-Kt}`    where `e^C=C'` is again a constant.


Hence we have,


`T=70+C'e^{-Kt}`


Applying the initial condition we get,


`140=70+C' ` implies `C'=70`


Therefore we have the solution:


`T=70(1+e^{-Kt})`

No comments:

Post a Comment