Sunday, 23 August 2015

`int sin^4(6theta) d theta` Find the indefinite integral

Indefinite integrals are written in the form of `int f(x) dx = F(x) +C`

 where: `f(x)` as the integrand


          `F(x)` as the anti-derivative function 


           `C`  as the arbitrary constant known as constant of integration


To evaluate the given problem `int sin^4(6theta) d theta` , we may apply u-substitution by letting: `u = 6theta` then `du = 6 d theta` or `(du)/6 = d theta` .


The integral becomes:


`int sin^4(6theta) d theta=int sin^4(u) * (du)/6`


 Apply the basic properties of integration: `int c*f(x) dx= c int f(x) dx` .


`int sin^4(u) * (du)/6=1/6int sin^4(u)du` .


Apply the integration formula for sine function: `int sin^n(x) dx = -(cos(x)sin^(n-1)(x))/n+(n-1)/n int sin^(n-2)(x)dx` .


`1/6int sin^4(u)du=1/6[-(cos(u)sin^(4-1)(u))/4+(4-1)/4 int sin^(4-2)(u)du]` .


                    `=1/6[-(cos(u)sin^(3)(u))/4+3/4 int sin^(2)(u)du]`


For the integral `int sin^(2)(u)du` , we may apply trigonometric identity: `sin^2(x)= 1-cos(2x)/2 or 1/2 - cos(2x)/2.`


We get:


`int sin^(2)(u)du = int ( 1/2 - cos(2u)/2) du` .


Apply the basic integration property:`int (u-v) dx = int (u) dx - int (v) dx` .


`int ( 1/2 - cos(2u)/2) du=int ( 1/2) du - int cos(2u)/2 du`


                                   `= 1/2u - 1/4sin(2u)+C`


                                  or `u/2 - sin(2u)/4+C`


Note: From the table of integrals, we have `int cos(theta) d theta = sin(theta)+C.`


Let: `v = 2u` then `dv = 2du ` or` (dv)/2= du`


then`int cos(2x)/2 du =int cos(v)/2 * (dv)/2`


                             `= 1/4 sin(v)`


                             `= 1/4 sin(2u)`


Applying `int sin^(2)(u)du=u/2 - sin(2u)/4+C` , we get:


`1/6int sin^4(u)du=1/6[-(cos(u)sin^(3)(u))/4+3/4 int sin^(2)(u)du]`


                           `=1/6[-(cos(u)sin^(3)(u))/4+3/4 [u/2 - sin(2u)/4]]+C`


                           `=1/6[-(cos(u)sin^(3)(u))/4+(3u)/8 - (3sin(2u))/16]+C`


                           `=(-cos(u)sin^(3)(u))/24+(3u)/48 - (3sin(2u))/96+C`


Plug-in `u =6theta ` on `(-cos(u)sin^(3)(u))/24+(3u)/48 - (3sin(2u))/96+C`  to find the  indefinite integral as:


`int sin^4(6theta) d theta =(cos(6theta)sin^(3)(6theta))/24+(3*6theta)/48 - (3sin(2*6theta))/96+C`


                         `=(cos(6theta)sin^(3)(6theta))/24+(18theta)/48 - (3sin(12theta))/96+C`


                        `=(cos(6theta)sin^(3)(6theta))/24+(3theta)/8 - (sin(12theta))/32+C`

No comments:

Post a Comment