Saturday, 29 August 2015

`int_0^pi (5e^x + 3sin(x))dx` Evaluate the integral


You need to evaluate the definite integral using the fundamental theorem of calculus, such that: `int_a^b f(x)dx = F(b) - F(a)`


`int_0^pi (5e^x+ 3sin x)dx = int_0^pi 5e^x dx + int_0^pi 3sin x dx`


`int_0^pi (5e^x+ 3sin x)dx = (5e^x - 3cos x)|_0^pi`


`int_0^pi (5e^x+ 3sin x)dx =5e^pi - 3cos pi - 5e^0 + 3cos 0`


`int_0^pi (5e^x+ 3sin x)dx = 5e^pi - 3*(-1) - 5 + 3`


`int_0^pi (5e^x+ 3sin x)dx = 5e^pi + 1`


Hence,...


You need to evaluate the definite integral using the fundamental theorem of calculus, such that: `int_a^b f(x)dx = F(b) - F(a)`


`int_0^pi (5e^x+ 3sin x)dx = int_0^pi 5e^x dx + int_0^pi 3sin x dx`


`int_0^pi (5e^x+ 3sin x)dx = (5e^x - 3cos x)|_0^pi`


`int_0^pi (5e^x+ 3sin x)dx =5e^pi - 3cos pi - 5e^0 + 3cos 0`


`int_0^pi (5e^x+ 3sin x)dx = 5e^pi - 3*(-1) - 5 + 3`


`int_0^pi (5e^x+ 3sin x)dx = 5e^pi + 1`


Hence, evaluating the definite integral yields


` int_0^pi (5e^x+ 3sin x)dx = 5e^pi + 1`

No comments:

Post a Comment