Sunday, 27 September 2015

`int (x^2-1)/(x^3+x) dx` Use partial fractions to find the indefinite integral

`int(x^2-1)/(x^3+x)dx`


`(x^2-1)/(x^3+x)=(x^2-1)/(x(x^2+1))`


Now let's create partial fraction template,


`(x^2-1)/(x(x^2+1))=A/x+(Bx+C)/(x^2+1)`


Multiply equation by the denominator,


`(x^2-1)=A(x^2+1)+(Bx+C)x`


`(x^2-1)=Ax^2+A+Bx^2+Cx`


`x^2-1=(A+B)x^2+Cx+A`


Comparing the coefficients of the like terms,


`A+B=1`  ----------------(1)


`C=0`


`A=-1`


Plug the value of A in equation 1,


`-1+B=1`


`B=2`


Plug in the values of A,B and C in the partial fraction template,


`(x^2-1)/(x(x^2+1))=-1/x+(2x)/(x^2+1)`


`int(x^2-1)/(x^3+x)dx=int(-1/x+(2x)/(x^2+1))dx`


Apply the sum rule,


`=int-1/xdx+int(2x)/(x^2+1)dx`


Take the constant out,


`=-1int1/xdx+2intx/(x^2+1)dx`


Now evaluate both the integrals separately,


`int1/xdx=ln|x|`


Now let's evaluate second integral,


...

`int(x^2-1)/(x^3+x)dx`


`(x^2-1)/(x^3+x)=(x^2-1)/(x(x^2+1))`


Now let's create partial fraction template,


`(x^2-1)/(x(x^2+1))=A/x+(Bx+C)/(x^2+1)`


Multiply equation by the denominator,


`(x^2-1)=A(x^2+1)+(Bx+C)x`


`(x^2-1)=Ax^2+A+Bx^2+Cx`


`x^2-1=(A+B)x^2+Cx+A`


Comparing the coefficients of the like terms,


`A+B=1`  ----------------(1)


`C=0`


`A=-1`


Plug the value of A in equation 1,


`-1+B=1`


`B=2`


Plug in the values of A,B and C in the partial fraction template,


`(x^2-1)/(x(x^2+1))=-1/x+(2x)/(x^2+1)`


`int(x^2-1)/(x^3+x)dx=int(-1/x+(2x)/(x^2+1))dx`


Apply the sum rule,


`=int-1/xdx+int(2x)/(x^2+1)dx`


Take the constant out,


`=-1int1/xdx+2intx/(x^2+1)dx`


Now evaluate both the integrals separately,


`int1/xdx=ln|x|`


Now let's evaluate second integral,


`intx/(x^2+1)dx`


Apply integral substitution: `u=x^2+1`


`du=2xdx`


`=int1/u(du)/2`


`=1/2int1/udu`


`=1/2ln|u|`


Substitute back `u=x^2+1`


`=1/2ln|x^2+1|`


`int(x^2-1)/(x^3+x)dx=-ln|x|+2(1/2ln|x^2+1|)`


Simplify and add a constant C to the solution,


`=-ln|x|+ln|x^2+1|+C`


No comments:

Post a Comment