Wednesday, 30 September 2015

`y = 1/2 (xsqrt(4-x^2) + 4arcsin(x/2))` Find the derivative of the function

The derivative of y in terms of x is denoted by  `d/(dx)y` or `y'` .

 For the given problem: `y =1/2[xsqrt(4-x^2)+4arcsin(x/2)]` , we apply the basic derivative property:


`d/(dx) c*f(x) = c d/(dx) f(x)` .


Then,


`d/(dx)y =d/(dx) 1/2[xsqrt(4-x^2)+4arcsin(x/2)]`


`y’ =1/2 d/(dx) [xsqrt(4-x^2)+4arcsin(x/2)]`



Apply the basic differentiation property: `d/(dx) (u+v) = d/(dx) (u) + d/(dx) (v)`


`y’ =1/2[d/(dx) (xsqrt(4-x^2))+ d/(dx) (4arcsin(x/2))]`



For the derivative of `d/(dx) (xsqrt(4-x^2))` , we apply the Product Rule: `d/(dx)(u*v) = u’*v =+u*v’` .


`d/(dx) (xsqrt(4-x^2))= d/(dx)(x) *sqrt(4-x^2)+ x * d/(dx) (sqrt(4-x^2))`



Let `u=x` then `u'= 1`


    `v= sqrt(4-x^2) ` then `v' =-x/ sqrt(4-x^2)`


Note: `d/(dx) sqrt(4-x^2) = d/(dx)(4-x^2)^(1/2)`


Applying the chain rule of derivative:


`d/(dx)(4-x^2)^(1/2)= 1/2(4-x^2)^(-1/2)*(-2x)`


                     ` =-x(4-x^2)^(-1/2)`


                    `=-x/(4-x^2)^(1/2)`  or - `–x/sqrt(4-x^2)`


 Following the Product Rule, we set-up the derivative as:


`d/(dx)(x) *sqrt(4-x^2)+ x * d/(dx) (sqrt(4-x^2))`


`= 1 * sqrt(4-x^2)+ x*(-x/sqrt(4-x^2))`


`= sqrt(4-x^2)-x^2/sqrt(4-x^2)`


 Express as one fraction:


`sqrt(4-x^2)* sqrt(4-x^2)/ sqrt(4-x^2)-x^2/sqrt(4-x^2)`


`=( sqrt(4-x^2))^2/ sqrt(4-x^2) –x^2/sqrt(4-x^2)`


`=( 4-x^2)/ sqrt(4-x^2) –x^2/sqrt(4-x^2)`


`=( 4-x^2-x^2)/ sqrt(4-x^2)`


`=( 4-2x^2)/ sqrt(4-x^2)`



Then, `d/(dx) (xsqrt(4-x^2))= ( 4-2x^2)/ sqrt(4-x^2)`



For the derivative of `d/(dx) (4arcsin(x/2))` , we apply the basic derivative property: `d/(dx) c*f(x) = c d/(dx) f(x)` .


`d/(dx) (4arcsin(x/2))= 4 d/(dx) (arcsin(x/2))`


Apply the basic derivative formula for inverse sine function: `d/(dx) (arcsin(u))= (du)/sqrt(1-u^2)` .


Let `u =x/2` then `du=1/2`


`4d/(dx) (4arcsin(x/2))]= 4*(1/2)/sqrt(1-(x/2)^2)`


                    `= 2/sqrt(1-(x^2/4))`


                    ` =2/sqrt(1*4/4-(x^2/4))`


                     ` = 2/sqrt((4-x^2)/4)`


                    ` = 2/ (sqrt(4-x^2)/sqrt(4))`


                   `=2/ (sqrt(4-x^2)/2)`


                   `=2*2/sqrt(4-x^2)`


                   `=4/sqrt(4-x^2)`




Combining the results, we get:


`y' = 1/2[d/(dx) (xsqrt(4-x^2))+ d/(dx) (4arcsin(x/2))]`


`=1/2[( 4-2x^2)/ sqrt(4-x^2)+4/sqrt(4-x^2)]`


`=1/2[( 4-2x^2+4)/ sqrt(4-x^2)]`


` =1/2[( -2x^2+8)/ sqrt(4-x^2)]`


` =1/2[( 2(-x^2+4))/ sqrt(4-x^2)]`


` =(-x^2+4)/ sqrt(4-x^2)]`


or `y'=(4-x^2)/ sqrt(4-x^2)]`



Applying Law of Exponents:  ` x^n/x^m= x^n-m` :


`y' =(4-x^2)/ sqrt(4-x^2)`


` =(4-x^2)^1/ (4-x^2)^(1/2)`


` =(4-x^2)^(1-1/2)`


`=(4-x^2)^(1/2)`


Final answer:


`y'=(4-x^2)^(1/2)`


 or


`y'=sqrt(4-x^2)`

No comments:

Post a Comment