Sunday, 11 October 2015

A block of mass `m` moves on a horizontal surface with coefficient of friction `mu` , subject to a constant force `F_0` acting vertically downward...

There are 4 forces acting on the block:gravitational force `mg` downwards,the force `F_0` downwards,the reaction force `N` upwards,the friction force `F_f` horizontally.


The net force `F_(n et),` which is their vector sum, gives the block some acceleration `a.` By Newton's Second law `F_(n et) = ma.` Because the block moves horizontally, its speed and acceleration are also horizontal. Thus the net force is also horizontal that means all vertical forces are...

There are 4 forces acting on the block:
gravitational force `mg` downwards,
the force `F_0` downwards,
the reaction force `N` upwards,
the friction force `F_f` horizontally.


The net force `F_(n et),` which is their vector sum, gives the block some acceleration `a.` By Newton's Second law `F_(n et) = ma.` Because the block moves horizontally, its speed and acceleration are also horizontal. Thus the net force is also horizontal that means all vertical forces are balanced, `N = mg + F_0,` and `F_(n et) = F_f.`


It is known that `F_f = mu N = mu(mg + F_0).` Therefore, the acceleration magnitude is `a =mu(mg + F_0)/m =mu(g + F_0/m).` Also it is known that friction force is opposite to the direction of movement.


Therefore, the speed of the block is `V(t) = v - at` and the block stops at time `t_1 = v/a` (when the speed becomes zero). The distance as a function of time is therefore  `D(t) = vt - (at^2)/2, tlt=t_1,`  and the farthest distance is


`D(t_1) = vt_1 - (at_1^2)/2 = vt_1 - (vt_1)/2 = (vt_1)/2 =v^2/(2mu(g + F_0/m)).`


This is the answer.

No comments:

Post a Comment