Saturday, 10 October 2015

`int 1 /(25+4x^2) dx` Find the indefinite integral

`int1/(25+4x^2)dx`


Let's transform the denominator of the integral,


`int1/(25+4x^2)dx=int1/(4(x^2+25/4))dx`


Take the constant out,


`=1/4int1/(x^2+(5/2)^2)dx`


Now use the standard integral:`int1/(x^2+a^2)dx=1/aarctan(x/a)`


`=1/4(1/(5/2))arctan(x/(5/2))`


simplify and add a constant C to the solution,


`=(1/4)(2/5)arctan((2x)/5)+C`


`=1/10arctan((2x)/5)+C`

`int1/(25+4x^2)dx`


Let's transform the denominator of the integral,


`int1/(25+4x^2)dx=int1/(4(x^2+25/4))dx`


Take the constant out,


`=1/4int1/(x^2+(5/2)^2)dx`


Now use the standard integral:`int1/(x^2+a^2)dx=1/aarctan(x/a)`


`=1/4(1/(5/2))arctan(x/(5/2))`


simplify and add a constant C to the solution,


`=(1/4)(2/5)arctan((2x)/5)+C`


`=1/10arctan((2x)/5)+C`

No comments:

Post a Comment