Saturday 31 October 2015

`int xsin^2x dx` Find the indefinite integral

To solve the indefinite integral, we follow `int f(x) dx = F(x) +C`


where:


`f(x)` as the integrand function


`F(x)` as the antiderivative of f(x)


`C` as the constant of integration.


For the given integral problem: int x sin^2(x) dx, we may apply integration by parts: `int u *dv = uv - int v *du` .


We may let:


`u = x`  then `du =1 dx` or `dx`


`dv= sin^2(x) dx` then `v = x/2...

To solve the indefinite integral, we follow `int f(x) dx = F(x) +C`


where:


`f(x)` as the integrand function


`F(x)` as the antiderivative of f(x)


`C` as the constant of integration.


For the given integral problem: int x sin^2(x) dx, we may apply integration by parts: `int u *dv = uv - int v *du` .


We may let:


`u = x`  then `du =1 dx` or `dx`


`dv= sin^2(x) dx` then `v = x/2 - sin(2x)/4`


Note: From the table of integrals, we have `int sin^2(ax) dx = x/2 - sin(2ax)/(4a)` . We apply this on `v =int dv =intsin^2(x) dx `  where `a =1` .


Applying the formula for integration by parts, we have:


`int x sin^2(x) dx= x*(x/2 - sin(2x)/4 ) - int (x/2 - sin(2x)/4 ) dx`


                              `=x^2/2 - (xsin(2x))/4 - int (x/2 - sin(2x)/4 ) dx`


For the integral:  `int (x/2 - sin(2x)/4 ) dx` , we may apply the basic integration property: : `int (u-v) dx = int (u) dx - int (v) dx` .



`int (x/2 - sin(2x)/4 ) dx =int (x/2) dx -int sin(2x)/4 ) dx`


                                    ` = 1/2 int x dx - 1/4 int sin(2x) dx` .



Apply the Power rule for integration:


`int x^n dx = x^(n+1)/(n+1) +c` 


`1/2 int x dx = 1/2*x^(1+1)/(1+1)`


                  `= 1/2* x^2/2`


                  `= x^2/4`


Apply the basic integration formula for sine function: `int sin(u) du = -cos(u) +C` .


Let: `u =2x` then `du = 2 dx` or `(du)/2 = dx` .


`1/4 int sin(2x) dx = 1/4 int sin(u) * (du)/2`


                              `= 1/4 *1/2 int sin(u) du`


                              `= 1/8 (-cos(u))`


                               `= -cos(u)/8`


Plug-in `u = 2x` on `-cos(u)/8` , we get: `1/4 int sin(2x) dx =-cos(2x)/8` .


Combining the results, we get:


`int (x/2 - sin(2x)/4 ) dx =x^2/4 - (-cos(2x)/8) +C`


                                     ` =x^2/4+ cos(2x)/8 +C`


Then, the complete indefinite integral will be:


`int x sin^2(x) dx=x^2/2 - (xsin(2x))/4 - int (x/2 - sin(2x)/4 ) dx`


                               `=x^2/2 - (xsin(2x))/4 -(x^2/4+ cos(2x)/8) +C`


                               `=x^2/2 - (xsin(2x))/4 - x^2/4 - cos(2x)/8 +C`


                               `= (x^2)/4- (xsin(2x))/4- cos(2x)/8 +C` 

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...