Wednesday, 7 October 2015

`x=4cos^2theta , y=2sintheta` Find all points (if any) of horizontal and vertical tangency to the curve.

Parametric curve (x(t),y(t)) has a horizontal tangent if its slope `dy/dx` is zero i.e when `dy/dt=0` and `dx/dt!=0`


It has a vertical tangent if its slope approaches infinity i.e it is undefined, which implies that `dx/dt=0` and `dy/dt!=0`  


Given parametric equations are:


`x=4cos^2(theta) ,y=2sin(theta)`


Here the parameter is `theta`


Let's take the derivative of x and y with respect to `theta`


`dx/(d theta)=4(2cos(theta)d/(d theta)cos(theta))`


`dx/(d theta)=4(2cos(theta)(-sin(theta)))`


`dx/(d theta)=-4(2sin(theta)cos(theta))`


Use trigonometric identity: `sin(2theta)=2sin(theta)cos(theta)`


`dx/(d theta)=-4sin(2theta)`


`dy/(d theta)=2cos(theta)`


For Horizontal tangents,...

Parametric curve (x(t),y(t)) has a horizontal tangent if its slope `dy/dx` is zero i.e when `dy/dt=0` and `dx/dt!=0`


It has a vertical tangent if its slope approaches infinity i.e it is undefined, which implies that `dx/dt=0` and `dy/dt!=0`  


Given parametric equations are:


`x=4cos^2(theta) ,y=2sin(theta)`


Here the parameter is `theta`


Let's take the derivative of x and y with respect to `theta`


`dx/(d theta)=4(2cos(theta)d/(d theta)cos(theta))`


`dx/(d theta)=4(2cos(theta)(-sin(theta)))`


`dx/(d theta)=-4(2sin(theta)cos(theta))`


Use trigonometric identity: `sin(2theta)=2sin(theta)cos(theta)`


`dx/(d theta)=-4sin(2theta)`


`dy/(d theta)=2cos(theta)`


For Horizontal tangents, set the derivative of y equal to zero


`dy/(d theta)=2cos(theta)=0`


`=>cos(theta)=0`


`=>theta=pi/2,(3pi)/2`


Let's check `dx/(d theta)` for the above angles,


For `theta=pi/2`


`dx/(d theta)=-4sin(2*pi/2)=-4sin(pi)=0`


For `theta=(3pi)/2`


`dx/(d theta)=-4sin(2*(3pi)/2)=-4sin(3pi)=0`


So, there are no horizontal tangents.


Now for vertical tangents, set the derivative of x equal to zero,


`dx/(d theta)=-4sin(2theta)=0`


`=>sin(2theta)=0`


`=>2theta=0,pi,2pi,3pi`


`=>theta=0,pi/2,pi,(3pi)/2`


Let's check for the above angles,


For `theta=0`


`dy/(d theta)=2cos(0)=2` 


For `theta=pi/2`


`dy/(d theta)=2cos(pi/2)=0`


For `theta=pi`


`dy/(d theta)=2cos(pi)=-2`


For `theta=(3pi)/2`


`dy/(d theta)=2cos((3pi)/2)=0`


So, the curve has vertical tangents at `theta=0,pi`


Now let's find the corresponding x and y coordinates by plugging `theta` in the parametric equation,


For `theta=0`


`x=4cos^2(0)=4`


`y=2sin(0)=0`


For `theta=pi`


`x=4cos^2(pi)=4`


`y=2sin(pi)=0`


So, the given parametric curve has vertical tangent at (4,0).

No comments:

Post a Comment