Wednesday, 25 December 2013

`int 5cosx/(sin^2x+3sinx-4)dx` Use substitution and partial fractions to find the indefinite integral

`int5cos(x)/(sin^2(x)+3sin(x)-4)dx`


Take the constant out,


`=5intcos(x)/(sin^2(x)+3sin(x)-4)dx`


Now let's apply integral substitution:`u=sin(x)`


`=>du=cos(x)dx`


`=5int1/(u^2+3u-4)du`


Now to use partial fractions, denominator of the integrand needs to be factored,


Let's split the middle term,


`1/(u^2+3u-4)=1/(u^2-u+4u-4)`


`=1/(u(u-1)+4(u-1))`


`=1/((u-1)(u+4))`


Now let's write it as sum of partial fractions:


`1/((u-1)(u+4))=A/(u-1)+B/(u+4)`


Multiply the above by the LCD,


`=>1=A(u+4)+B(u-1)`


`1=Au+4A+Bu-B`


`1=(A+B)u+4A-B`


Equating the coefficients of the like terms,


`A+B=0`   -----------------------------(1)


`4A-B=1`  ----------------------------(2)


Solve the above linear equations to get the values of A...

`int5cos(x)/(sin^2(x)+3sin(x)-4)dx`


Take the constant out,


`=5intcos(x)/(sin^2(x)+3sin(x)-4)dx`


Now let's apply integral substitution:`u=sin(x)`


`=>du=cos(x)dx`


`=5int1/(u^2+3u-4)du`


Now to use partial fractions, denominator of the integrand needs to be factored,


Let's split the middle term,


`1/(u^2+3u-4)=1/(u^2-u+4u-4)`


`=1/(u(u-1)+4(u-1))`


`=1/((u-1)(u+4))`


Now let's write it as sum of partial fractions:


`1/((u-1)(u+4))=A/(u-1)+B/(u+4)`


Multiply the above by the LCD,


`=>1=A(u+4)+B(u-1)`


`1=Au+4A+Bu-B`


`1=(A+B)u+4A-B`


Equating the coefficients of the like terms,


`A+B=0`   -----------------------------(1)


`4A-B=1`  ----------------------------(2)


Solve the above linear equations to get the values of A and B,


Add equation 1 and 2,


`5A=1`


`A=1/5`


Plug the value of A in equation 1,


`1/5+B=0`


`B=-1/5`


Plug in the values of A and B in the partial fraction template,


`1/((u-1)(u+4))=(1/5)/(u-1)+(-1/5)/(u+4)`


`=1/(5(u-1))-1/(5(u+4))`


`int1/(u^2+3u-4)du=int(1/(5(u-1))-1/(5(u+4)))du`


`=int1/5(1/(u-1)-1/(u+4))du`


Take the constant out,


`=1/5int(1/(u-1)-1/(u+4))du`


Apply the sum rule,


`=1/5(int1/(u-1)du-int1/(u+4)du)`


Now use the common integral:`int1/xdx=ln|x|`


`=1/5(ln|u-1|-ln|u+4|)`


Substitute back `u=sin(x)`


`=1/5(ln|sin(x)-1|-ln|sin(x)+4|)`


`int5cos(x)/(sin^2(x)+3sin(x)-4)dx=5(1/5(ln|sin(x)-1|-ln|sin(x)+4|)`


Simplify and add a constant C to the solution,


`=ln|sin(x)-1|-ln|sin(x)+4|+C`

No comments:

Post a Comment