Wednesday, 25 December 2013

`int (x+1) / sqrt(3x^2+6x) dx` Find the indefinite integral

`int (x + 1)/sqrt(3x^2+6x) dx`


To solve, apply u-substitution method.



`u = 3x^2+6x`


`du = (6x+6)dx`


`du = 6(x + 1)dx`


`1/6du = (x +1)dx`



Expressing the integral in terms of u, it becomes


`= int 1/sqrt(3x^2 + 6x)*(x + 1)dx`


`= int 1/sqrtu *1/6 du`


`= 1/6 int1/sqrtu du`


Then, convert the radical to exponent form.


`= 1/6 int 1/u^(1/2)du`


Also, apply the negative exponent rule `a^(-m) = 1/a^m` .


`= 1/6 int u^(-1/2)...

`int (x + 1)/sqrt(3x^2+6x) dx`


To solve, apply u-substitution method.



`u = 3x^2+6x`


`du = (6x+6)dx`


`du = 6(x + 1)dx`


`1/6du = (x +1)dx`



Expressing the integral in terms of u, it becomes


`= int 1/sqrt(3x^2 + 6x)*(x + 1)dx`


`= int 1/sqrtu *1/6 du`


`= 1/6 int1/sqrtu du`


Then, convert the radical to exponent form.


`= 1/6 int 1/u^(1/2)du`


Also, apply the negative exponent rule `a^(-m) = 1/a^m` .


`= 1/6 int u^(-1/2) du`


To take the integral of this, apply the formula `int x^n dx = x^(n+1)/(n+1)+C` .


`= 1/6 *u^(1/2)/(1/2) + C`


`= 1/6 * (2u^(1/2))/1+C`


`=u^(1/2)/3+C`


`= sqrtu /3 + C`


And, substitute back `u = 3x^2+6x` .


`= sqrt(3x^2+6x) /3 + C`



Therefore, `int (x+1)/sqrt(3x^2+6x)dx = sqrt(3x^2+6x) /3 + C` .

No comments:

Post a Comment