Monday, 10 March 2014

`int 1 / (xsqrt(x^4-4)) dx` Find the indefinite integral

For the given integral: `int 1/(xsqrt(x^4-4))dx` , we may apply u-substitution by letting:


`u =x^4-4 ` then ` du = 4x^3 dx` .


Rearrange `du = 4x^3 dx` into `(du)/( 4x^3)= dx`


Plug-in `u =x^4-4`  and `(du)/( 4x^3)= dx` , we get:


`int 1/(xsqrt(x^4-4))dx =int 1/(xsqrt(u))* (du)/( 4x^3)`


                       ` =int 1/(4x^4sqrt(u))du`


Recall `u =x^4-4` then adding 4 on both sides becomes: `u + 4 = x^4` .


Plug-in `x^4...

For the given integral: `int 1/(xsqrt(x^4-4))dx` , we may apply u-substitution by letting:


`u =x^4-4 ` then ` du = 4x^3 dx` .


Rearrange `du = 4x^3 dx` into `(du)/( 4x^3)= dx`


Plug-in `u =x^4-4`  and `(du)/( 4x^3)= dx` , we get:


`int 1/(xsqrt(x^4-4))dx =int 1/(xsqrt(u))* (du)/( 4x^3)`


                       ` =int 1/(4x^4sqrt(u))du`


Recall `u =x^4-4` then adding 4 on both sides becomes: `u + 4 = x^4` .


Plug-in `x^4 =u+4` in the integral:


`int 1/(4x^4sqrt(u))du` =`int 1/(4(u+4)sqrt(u))du`


Apply the basic integration property: `int c*f(x) dx = c int f(x) dx` :


`int 1/(4(u+4)sqrt(u))du=1/4int 1/((u+4)sqrt(u))du`


Apply another set of substitution by letting:


`v =sqrt(u) `  which is the same as `v^2 =u` .


Then taking the derivative on both sides, we get `2v dv = du` .


Plug-in `u =v^2` , `du = 2v dv` , and `sqrt(u)=v `  , we get:


`1/4 int 1/((u+4)sqrt(u))du = 1/4int 1/((v^2+4)v)(2v dv)`


We simplify by cancelling out common factors v and 2:


`1/4int 1/((v^2+4)v)(2v dv) =1/2int (dv)/(v^2+4) or1/2int (dv)/(v^2+2^2)`  



The integral part resembles the integration formula:


`int (du)/(u^2+a^2) = (1/a) arctan (u/a) +C`


 Then, 


`1/2 int (dv)/(v^2+4) =1/2 *(1/2) arctan (v/2) +C`


                        ` =1/4 arctan (v/2) +C`


Recall that we let `v =sqrt(u) ` and `u =x^4-4 `  then  ` v = sqrt(x^4-4)`


Plug-in `v = sqrt(x^4-4)` in  `1/4 arctan (v/2) +C`  to get the final answer:


`int 1/(xsqrt(x^4-4))dx =1/4 arctan (sqrt(x^4-4)/2) +C`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...