You need to evaluate the integral, such that:
`int_(-1)^2(x^3 - 2x)dx = int_(-1)^2 x^3 dx - int_(-1)^2 2x dx`
`int_(-1)^2(x^3 - 2x)dx = (x^4/4 - x^2)|_(-1)^2`
`int_(-1)^2(x^3 - 2x)dx = (2^4/4 - 2*2 - (-1)^4/4 - 2)`
`int_(-1)^2(x^3 - 2x)dx = 4 - 4 -1/4 - 2`
`int_(-1)^2(x^3 - 2x)dx = -9/4`
Hence evauating the definite integral yields `int_(-1)^2(x^3 - 2x)dx = -9/4.`
You need to evaluate the integral, such that:
`int_(-1)^2(x^3 - 2x)dx = int_(-1)^2 x^3 dx - int_(-1)^2 2x dx`
`int_(-1)^2(x^3 - 2x)dx = (x^4/4 - x^2)|_(-1)^2`
`int_(-1)^2(x^3 - 2x)dx = (2^4/4 - 2*2 - (-1)^4/4 - 2)`
`int_(-1)^2(x^3 - 2x)dx = 4 - 4 -1/4 - 2`
`int_(-1)^2(x^3 - 2x)dx = -9/4`
Hence evauating the definite integral yields `int_(-1)^2(x^3 - 2x)dx = -9/4.`
No comments:
Post a Comment