Monday, 2 March 2015

`int e^xsqrt(1-e^(2x)) dx` Find the indefinite integral

Recall that indefinite integral follows the formula: `int f(x) dx = F(x) +C`


 where: `f(x)` as the integrand


           `F(x)` as the anti-derivative function 


           `C`  as the arbitrary constant known as constant of integration


For the given problem `int e^xsqrt(1-e^(2x))dx` , it resembles one of the formula from integration table.  We may apply the integral formula for function with roots as:


`int sqrt(a^2-u^2)du = 1/2u*sqrt(a^2-u^2)+1/2a^2arctan(u/sqrt(a^2-u^2))+C`


For easier...

Recall that indefinite integral follows the formula: `int f(x) dx = F(x) +C`


 where: `f(x)` as the integrand


           `F(x)` as the anti-derivative function 


           `C`  as the arbitrary constant known as constant of integration


For the given problem `int e^xsqrt(1-e^(2x))dx` , it resembles one of the formula from integration table.  We may apply the integral formula for function with roots as:


`int sqrt(a^2-u^2)du = 1/2u*sqrt(a^2-u^2)+1/2a^2arctan(u/sqrt(a^2-u^2))+C`


For easier comparison, we may apply u-substitution by letting `u =e^x` then `du =e^x dx` or `(du)/e^x = dx` .


Note that `u= e^x` then  `(du)/e^x = dx`  becomes  `(du)/u = dx`


Plug-in the values on the integral problem, we get:


`int e^xsqrt(1-e^(2x))dx=int usqrt(1-u^2)*(du)/u`


                              `= intsqrt(1-u^2)du`


Apply aforementioned integral formula for function with roots where `a^2=1`  , we get:


`intsqrt(1-u^2)du =1/2u*sqrt(1-u^2)+1/2*1*arctan(u/sqrt(1-u^2))+C`


                  `=1/2usqrt(1-u^2)+1/2arctan(u/sqrt(1-u^2))+C`


Plug-in `u = e^x` on `1/2usqrt(1-u^2)+1/2arctan(u/sqrt(1-u^2))+C` , we get the indefinite integral as:


`int e^xsqrt(1-e^(2x))dx=1/2e^xsqrt(1-(e^x)^2)+1/2arctan(e^x/sqrt(1-(e^x)^2))+C`


                            `=1/2e^xsqrt(1-e^(2x))+1/2arctan(e^x/sqrt(1-e^(2x)))+C`


                           `=(e^xsqrt(1-e^(2x)))/2+arctan(e^x/sqrt(1-e^(2x)))/2+C`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...