Recall that indefinite integral follows the formula: `int f(x) dx = F(x) +C`
where: `f(x)` as the integrand
`F(x)` as the anti-derivative function
`C` as the arbitrary constant known as constant of integration
For the given problem `int e^xsqrt(1-e^(2x))dx` , it resembles one of the formula from integration table. We may apply the integral formula for function with roots as:
`int sqrt(a^2-u^2)du = 1/2u*sqrt(a^2-u^2)+1/2a^2arctan(u/sqrt(a^2-u^2))+C`
For easier...
Recall that indefinite integral follows the formula: `int f(x) dx = F(x) +C`
where: `f(x)` as the integrand
`F(x)` as the anti-derivative function
`C` as the arbitrary constant known as constant of integration
For the given problem `int e^xsqrt(1-e^(2x))dx` , it resembles one of the formula from integration table. We may apply the integral formula for function with roots as:
`int sqrt(a^2-u^2)du = 1/2u*sqrt(a^2-u^2)+1/2a^2arctan(u/sqrt(a^2-u^2))+C`
For easier comparison, we may apply u-substitution by letting `u =e^x` then `du =e^x dx` or `(du)/e^x = dx` .
Note that `u= e^x` then `(du)/e^x = dx` becomes `(du)/u = dx`
Plug-in the values on the integral problem, we get:
`int e^xsqrt(1-e^(2x))dx=int usqrt(1-u^2)*(du)/u`
`= intsqrt(1-u^2)du`
Apply aforementioned integral formula for function with roots where `a^2=1` , we get:
`intsqrt(1-u^2)du =1/2u*sqrt(1-u^2)+1/2*1*arctan(u/sqrt(1-u^2))+C`
`=1/2usqrt(1-u^2)+1/2arctan(u/sqrt(1-u^2))+C`
Plug-in `u = e^x` on `1/2usqrt(1-u^2)+1/2arctan(u/sqrt(1-u^2))+C` , we get the indefinite integral as:
`int e^xsqrt(1-e^(2x))dx=1/2e^xsqrt(1-(e^x)^2)+1/2arctan(e^x/sqrt(1-(e^x)^2))+C`
`=1/2e^xsqrt(1-e^(2x))+1/2arctan(e^x/sqrt(1-e^(2x)))+C`
`=(e^xsqrt(1-e^(2x)))/2+arctan(e^x/sqrt(1-e^(2x)))/2+C`
No comments:
Post a Comment