Parametric curve (x(t),y(t)) has a horizontal tangent if its slope `dy/dx` is zero i.e when `dy/dt=0` and `dx/dt!=0`
It has a vertical tangent if its slope approaches infinity i.e it is undefined, which implies that `dx/dt=0` and `dy/dt!=0`
Given parametric equations are:
`x=4cos^2(theta) ,y=2sin(theta)`
Here the parameter is `theta`
Let's take the derivative of x and y with respect to `theta`
`dx/(d theta)=4(2cos(theta)d/(d theta)cos(theta))`
`dx/(d theta)=4(2cos(theta)(-sin(theta)))`
`dx/(d theta)=-4(2sin(theta)cos(theta))`
Use trigonometric identity: `sin(2theta)=2sin(theta)cos(theta)`
`dx/(d theta)=-4sin(2theta)`
`dy/(d theta)=2cos(theta)`
For Horizontal tangents,...
Parametric curve (x(t),y(t)) has a horizontal tangent if its slope `dy/dx` is zero i.e when `dy/dt=0` and `dx/dt!=0`
It has a vertical tangent if its slope approaches infinity i.e it is undefined, which implies that `dx/dt=0` and `dy/dt!=0`
Given parametric equations are:
`x=4cos^2(theta) ,y=2sin(theta)`
Here the parameter is `theta`
Let's take the derivative of x and y with respect to `theta`
`dx/(d theta)=4(2cos(theta)d/(d theta)cos(theta))`
`dx/(d theta)=4(2cos(theta)(-sin(theta)))`
`dx/(d theta)=-4(2sin(theta)cos(theta))`
Use trigonometric identity: `sin(2theta)=2sin(theta)cos(theta)`
`dx/(d theta)=-4sin(2theta)`
`dy/(d theta)=2cos(theta)`
For Horizontal tangents, set the derivative of y equal to zero
`dy/(d theta)=2cos(theta)=0`
`=>cos(theta)=0`
`=>theta=pi/2,(3pi)/2`
Let's check `dx/(d theta)` for the above angles,
For `theta=pi/2`
`dx/(d theta)=-4sin(2*pi/2)=-4sin(pi)=0`
For `theta=(3pi)/2`
`dx/(d theta)=-4sin(2*(3pi)/2)=-4sin(3pi)=0`
So, there are no horizontal tangents.
Now for vertical tangents, set the derivative of x equal to zero,
`dx/(d theta)=-4sin(2theta)=0`
`=>sin(2theta)=0`
`=>2theta=0,pi,2pi,3pi`
`=>theta=0,pi/2,pi,(3pi)/2`
Let's check for the above angles,
For `theta=0`
`dy/(d theta)=2cos(0)=2`
For `theta=pi/2`
`dy/(d theta)=2cos(pi/2)=0`
For `theta=pi`
`dy/(d theta)=2cos(pi)=-2`
For `theta=(3pi)/2`
`dy/(d theta)=2cos((3pi)/2)=0`
So, the curve has vertical tangents at `theta=0,pi`
Now let's find the corresponding x and y coordinates by plugging `theta` in the parametric equation,
For `theta=0`
`x=4cos^2(0)=4`
`y=2sin(0)=0`
For `theta=pi`
`x=4cos^2(pi)=4`
`y=2sin(pi)=0`
So, the given parametric curve has vertical tangent at (4,0).
No comments:
Post a Comment