Wednesday, 7 October 2015

`x=4cos^2theta , y=2sintheta` Find all points (if any) of horizontal and vertical tangency to the curve.

Parametric curve (x(t),y(t)) has a horizontal tangent if its slope `dy/dx` is zero i.e when `dy/dt=0` and `dx/dt!=0`


It has a vertical tangent if its slope approaches infinity i.e it is undefined, which implies that `dx/dt=0` and `dy/dt!=0`  


Given parametric equations are:


`x=4cos^2(theta) ,y=2sin(theta)`


Here the parameter is `theta`


Let's take the derivative of x and y with respect to `theta`


`dx/(d theta)=4(2cos(theta)d/(d theta)cos(theta))`


`dx/(d theta)=4(2cos(theta)(-sin(theta)))`


`dx/(d theta)=-4(2sin(theta)cos(theta))`


Use trigonometric identity: `sin(2theta)=2sin(theta)cos(theta)`


`dx/(d theta)=-4sin(2theta)`


`dy/(d theta)=2cos(theta)`


For Horizontal tangents,...

Parametric curve (x(t),y(t)) has a horizontal tangent if its slope `dy/dx` is zero i.e when `dy/dt=0` and `dx/dt!=0`


It has a vertical tangent if its slope approaches infinity i.e it is undefined, which implies that `dx/dt=0` and `dy/dt!=0`  


Given parametric equations are:


`x=4cos^2(theta) ,y=2sin(theta)`


Here the parameter is `theta`


Let's take the derivative of x and y with respect to `theta`


`dx/(d theta)=4(2cos(theta)d/(d theta)cos(theta))`


`dx/(d theta)=4(2cos(theta)(-sin(theta)))`


`dx/(d theta)=-4(2sin(theta)cos(theta))`


Use trigonometric identity: `sin(2theta)=2sin(theta)cos(theta)`


`dx/(d theta)=-4sin(2theta)`


`dy/(d theta)=2cos(theta)`


For Horizontal tangents, set the derivative of y equal to zero


`dy/(d theta)=2cos(theta)=0`


`=>cos(theta)=0`


`=>theta=pi/2,(3pi)/2`


Let's check `dx/(d theta)` for the above angles,


For `theta=pi/2`


`dx/(d theta)=-4sin(2*pi/2)=-4sin(pi)=0`


For `theta=(3pi)/2`


`dx/(d theta)=-4sin(2*(3pi)/2)=-4sin(3pi)=0`


So, there are no horizontal tangents.


Now for vertical tangents, set the derivative of x equal to zero,


`dx/(d theta)=-4sin(2theta)=0`


`=>sin(2theta)=0`


`=>2theta=0,pi,2pi,3pi`


`=>theta=0,pi/2,pi,(3pi)/2`


Let's check for the above angles,


For `theta=0`


`dy/(d theta)=2cos(0)=2` 


For `theta=pi/2`


`dy/(d theta)=2cos(pi/2)=0`


For `theta=pi`


`dy/(d theta)=2cos(pi)=-2`


For `theta=(3pi)/2`


`dy/(d theta)=2cos((3pi)/2)=0`


So, the curve has vertical tangents at `theta=0,pi`


Now let's find the corresponding x and y coordinates by plugging `theta` in the parametric equation,


For `theta=0`


`x=4cos^2(0)=4`


`y=2sin(0)=0`


For `theta=pi`


`x=4cos^2(pi)=4`


`y=2sin(pi)=0`


So, the given parametric curve has vertical tangent at (4,0).

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...