Given the equation of a line `y = mx + b,`
=> slope = `dy/dx = m` . Thus, the distance is:
`L = int_a^b sqrt(1+(dy/dx)^2) dx , a<=x<=b`
we know the two points` (x_1,y_1)=(0,0)`
`(x_2,y_2)=(8,15)`
`m = (y_2- y_1)/(x_2-x_1) = (15-0)/(8-0) = 15/8`
so now the length is `L = int_0^8 sqrt(1+(15/8)^2) dx`
`= int_0^8 sqrt(1+(225/64)) dx`
=` int_0^8 sqrt((64+225)/64)) dx`
= `int_0^8 sqrt((289)/64)) dx`
= `int_0^8 (17/8) dx`
= `(17/8) int_0^8 1...
Given the equation of a line `y = mx + b,`
=> slope = `dy/dx = m` . Thus, the distance is:
`L = int_a^b sqrt(1+(dy/dx)^2) dx , a<=x<=b`
we know the two points` (x_1,y_1)=(0,0)`
`(x_2,y_2)=(8,15)`
`m = (y_2- y_1)/(x_2-x_1) = (15-0)/(8-0) = 15/8`
so now the length is `L = int_0^8 sqrt(1+(15/8)^2) dx`
`= int_0^8 sqrt(1+(225/64)) dx`
=` int_0^8 sqrt((64+225)/64)) dx`
= `int_0^8 sqrt((289)/64)) dx`
= `int_0^8 (17/8) dx`
= `(17/8) int_0^8 1 dx`
= `(17/8) |_0^8 x`
=` (17/8 )[8-0]`
= `17 `
so the distance between the two points = 17
No comments:
Post a Comment