Tuesday, 27 August 2013

`f(x)=sqrt(x) ,n=3,c=4` Find the n'th Taylor Polynomial centered at c

Taylor series is an example of infinite series derived from the expansion of `f(x)` about a single point. It is represented by infinite sum of `f^n(x)`  centered at `x=c.`  The general formula for Taylor series is:

`f(x) = sum_(n=0)^oo (f^n(c))/(n!) (x-c)^n`


or


`f(x) = f(c) + f'(c) (x-c)+ (f'(c))/(2!) (x-c)^2+ (f'(c))/(3!) (x-c)^3+ (f'(c))/(4!) (x-c)^4+...`


 To evaluate the given function `f(x) =sqrt(x)` , we may express it in terms of fractional exponent. The function becomes:


`f(x) = (x)^(1/2)` .


Apply the definition of the Taylor series by listing the `f^n(x) ` up to `n=3.`


 We determine each derivative using Power Rule for differentiation: `d/(dx) x^n = n*x^(n-1)` .


`f(x) = (x)^(1/2)`


`f'(x) = 1/2 * x^(1/2-1)`


          `= 1/2x^(-1/2) or1/(2x^(1/2) )`


`f^2(x) = d/(dx) (1/2x^(-1/2))`


         `= 1/2 * d/(dx) (x^(-1/2))`


         `= 1/2*(-1/2x^(-1/2-1))`


         `= -1/4 x^(-3/2) or -1/(4x^(3/2))`


`f^3(x) = d/(dx) (-1/4x^(-3/2))`


          `= -1/4 *d/(dx) (x^(-3/2))`


          `= -1/4*(-3/2x^(-3/2-1))`


          `= 3/8 x^(-5/2) or 3/(8x^(5/2))`


Plug-in `x=4` , we get:


`f(x) = (4)^(1/2)`


         `= 2`


`f'(4)=1/(2*4^(1/2))`


         `=1/(2*2)`


         `=1/4`


`f^2(4)=-1/(4*2^(3/2))`


          `= -1/(4*8)`


         ` = -1/32`


`f^3(4)=3/(8*4^(5/2))`


          `= 3/(8*32)`


          `= 3/256`


Applying the formula for Taylor series centered at `c=4` , we get:


`sum_(n=0)^3 (f^n(4))/(n!)(x-4)^n`


   ` =f(4) + f'(4) (x-4)+ (f'(4))/(2!) (x-4)^2+ (f'(4))/(3!) (x-4)^3`


   ` =2+ (1/4) (x-4)+ (-1/32)/(2!) (x-4)^2+ (3/256)/(3!) (x-4)^3 `


   ` =2+ (1/4) (x-4)+ (-1/32)/(2!) (x-4)^2+ (3/256)/(3!) (x-4)^3 `


   ` =2+ 1/4 (x-4)-1/(32*2) (x-4)^2+ 3/(256*6) (x-4)^3 `


   `=2+ 1/4 (x-4)-1/64 (x-4)^2+ 3/1536 (x-4)^3`


   `=2+ 1/4 (x-4)-1/64 (x-4)^2+ 1/512 (x-4)^3 `


The Taylor polynomial of degree `n=3`  for the given function `f(x)=sqrt(x)`  centered at ` c=4`  will be:


`P(x) =2+ 1/4 (x-4)-1/64 (x-4)^2+ 1/512 (x-4)^3 `

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...