Saturday, 31 August 2013

`sum_(n=1)^oo 5^n/n^4` Use the Root Test to determine the convergence or divergence of the series.

To determine the convergence or divergence of a series `sum a_n` using Root test, we evaluate a limit as:


`lim_(n-gtoo) root(n)(|a_n|)= L`


or


`lim_(n-gtoo) |a_n|^(1/n)= L`


Then, we follow the conditions:


a) `Llt1` then the series is absolutely convergent.


b) `Lgt1` then the series is divergent.


c) `L=1` or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.


We may apply Root...

To determine the convergence or divergence of a series `sum a_n` using Root test, we evaluate a limit as:


`lim_(n-gtoo) root(n)(|a_n|)= L`


or


`lim_(n-gtoo) |a_n|^(1/n)= L`


Then, we follow the conditions:


a) `Llt1` then the series is absolutely convergent.


b) `Lgt1` then the series is divergent.


c) `L=1` or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.


We may apply Root test on the given series `sum_(n=1)^oo 5^n/n^4` when we let:  `a_n =5^n/n^4` .


Applying the Root test, we set-up the limit as: 


`lim_(n-gtoo) |5^n/n^4|^(1/n) =lim_(n-gtoo) (5^n/n^4)^(1/n)`


Apply Law of Exponent: `(x/y)^n = x^n/y^n` and `(x^n)^m= x^(n*m)` .


`lim_(n-gtoo) (5^n/n^4)^(1/n) =lim_(n-gtoo) (5^n)^(1/n)/(n^4)^(1/n)`


                       ` =lim_(n-gtoo)5^(n*1/n)/n^(4*1/n)`


                       ` =lim_(n-gtoo)5^(n/n)/n^(4/n)`


                       ` =lim_(n-gtoo)5^1/n^(4/n)`


                       ` =lim_(n-gtoo)5/n^(4/n)`


Evaluate the limit.


`lim_(n-gtoo) 5/n^(4/n)=5 lim_(n-gtoo) 1/n^(4/n) `         


                ` =5 *1/oo^(4/oo)`


                ` =5 *1/oo^(0)`


                ` =5 *1/1`


                ` = 5*1`


                ` =5`


The limit value `L =5` satisfies the condition: `Lgt1` since `5gt1` .


Conclusion: The series `sum_(n=1)^oo 5^n/n^4` is divergent.

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...