Monday, 16 September 2013

`int sqrt(16-4x^2)dx` Find the indefinite integral

 Given ,


`int sqrt(16-4x^2)dx`


This Integral can be solved by using the Trigonometric substitutions  (Trig substitutions)


For `sqrt(a-bx^2)` we have to take `x=` `sqrt(a/b) sin(u)`



so here , For


`int sqrt(16-4x^2)dx -----(1)`


 `x` can be given as


`x= sqrt(16/4) sin(u)= sqrt(4) sin(u) = 2sin(u)`


so,` x= 2sin(u)` => `dx = 2 cos(u) du`


Now substituting `x` in (1) we get,


`int sqrt(16-4x^2)dx `


=`int sqrt(16-4(2sin(u))^2) (2 cos(u) du)`


= `int sqrt(16-4*4(sin(u))^2) (2 cos(u) du)`


...

 Given ,


`int sqrt(16-4x^2)dx`


This Integral can be solved by using the Trigonometric substitutions  (Trig substitutions)


For `sqrt(a-bx^2)` we have to take `x=` `sqrt(a/b) sin(u)`



so here , For


`int sqrt(16-4x^2)dx -----(1)`


 `x` can be given as


`x= sqrt(16/4) sin(u)= sqrt(4) sin(u) = 2sin(u)`


so,` x= 2sin(u)` => `dx = 2 cos(u) du`


Now substituting `x` in (1) we get,


`int sqrt(16-4x^2)dx `


=`int sqrt(16-4(2sin(u))^2) (2 cos(u) du)`


= `int sqrt(16-4*4(sin(u))^2) (2 cos(u) du)`


= `int sqrt(16-16(sin(u))^2) (2 cos(u) du)`


= `int sqrt(16(1-(sin(u))^2)) (2 cos(u) du)`


= `int sqrt(16(cos(u))^2) (2 cos(u) du)`


= `int (4cos(u)) (2 cos(u) du)`


=` int 8cos^2(u) du`


= `8 int cos^2(u) du`


= `8 int (1+cos(2u))/2 du`


= `(8/2) int (1+cos(2u)) du`


= `4 int (1+cos(2u)) du`


= `4 [int 1 du +int cos(2u) du]`


= `4 [u+(1/2)(sin(2u))] +c`  


but `x= 2sin(u)`


=> `(x/2)= sin(u)`


=> `u= sin^(-1) (x/2)`


so,


`4 [u+(1/2)(sin(2u))] +c`


=`4 [sin^(-1) (x/2)+1/2sin(2(sin^(-1) (x/2)))] +c`  


so,


`int sqrt(16-4x^2)dx`


=`4sin^(-1) (x/2)+2sin(2(sin^(-1) (x/2))) +c `

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...