Given ,
`int sqrt(16-4x^2)dx`
This Integral can be solved by using the Trigonometric substitutions (Trig substitutions)
For `sqrt(a-bx^2)` we have to take `x=` `sqrt(a/b) sin(u)`
so here , For
`int sqrt(16-4x^2)dx -----(1)`
`x` can be given as
`x= sqrt(16/4) sin(u)= sqrt(4) sin(u) = 2sin(u)`
so,` x= 2sin(u)` => `dx = 2 cos(u) du`
Now substituting `x` in (1) we get,
`int sqrt(16-4x^2)dx `
=`int sqrt(16-4(2sin(u))^2) (2 cos(u) du)`
= `int sqrt(16-4*4(sin(u))^2) (2 cos(u) du)`
...
Given ,
`int sqrt(16-4x^2)dx`
This Integral can be solved by using the Trigonometric substitutions (Trig substitutions)
For `sqrt(a-bx^2)` we have to take `x=` `sqrt(a/b) sin(u)`
so here , For
`int sqrt(16-4x^2)dx -----(1)`
`x` can be given as
`x= sqrt(16/4) sin(u)= sqrt(4) sin(u) = 2sin(u)`
so,` x= 2sin(u)` => `dx = 2 cos(u) du`
Now substituting `x` in (1) we get,
`int sqrt(16-4x^2)dx `
=`int sqrt(16-4(2sin(u))^2) (2 cos(u) du)`
= `int sqrt(16-4*4(sin(u))^2) (2 cos(u) du)`
= `int sqrt(16-16(sin(u))^2) (2 cos(u) du)`
= `int sqrt(16(1-(sin(u))^2)) (2 cos(u) du)`
= `int sqrt(16(cos(u))^2) (2 cos(u) du)`
= `int (4cos(u)) (2 cos(u) du)`
=` int 8cos^2(u) du`
= `8 int cos^2(u) du`
= `8 int (1+cos(2u))/2 du`
= `(8/2) int (1+cos(2u)) du`
= `4 int (1+cos(2u)) du`
= `4 [int 1 du +int cos(2u) du]`
= `4 [u+(1/2)(sin(2u))] +c`
but `x= 2sin(u)`
=> `(x/2)= sin(u)`
=> `u= sin^(-1) (x/2)`
so,
`4 [u+(1/2)(sin(2u))] +c`
=`4 [sin^(-1) (x/2)+1/2sin(2(sin^(-1) (x/2)))] +c`
so,
`int sqrt(16-4x^2)dx`
=`4sin^(-1) (x/2)+2sin(2(sin^(-1) (x/2))) +c `
No comments:
Post a Comment