Thursday, 26 September 2013

`int_1^2((4 + u^2)/(u^3))du` Evaluate the integral.

You need to evaluate the definite integral using the fundamental theorem of calculus, such that:


`int_a^b f(u) du = F(b) - F(a)`


`int_1^2 (4+u^2)/(u^3) du = int_1^2 4/(u^3) du + int_1^2 (u^2)/(u^3) du`


`int_1^2 (4+u^2)/(u^3) du = 4int_1^2 (u^(-3)) du + int_1^2 1/u du`


Using the formula` int u^n = (u^(n+1))/(n+1)+ c` yields:


`4int_1^2 (u^(-3)) du = 4(u^(-2))/(-2) = -2/(u^2)|_1^2 = -2(1/2^2 - 1/1^2)`


`4int_1^2 (u^(-3)) du =-2(1/4 - 1) = -2*(-3/4) = 3/2`


`int_1^2...

You need to evaluate the definite integral using the fundamental theorem of calculus, such that:


`int_a^b f(u) du = F(b) - F(a)`


`int_1^2 (4+u^2)/(u^3) du = int_1^2 4/(u^3) du + int_1^2 (u^2)/(u^3) du`


`int_1^2 (4+u^2)/(u^3) du = 4int_1^2 (u^(-3)) du + int_1^2 1/u du`


Using the formula` int u^n = (u^(n+1))/(n+1)+ c` yields:


`4int_1^2 (u^(-3)) du = 4(u^(-2))/(-2) = -2/(u^2)|_1^2 = -2(1/2^2 - 1/1^2)`


`4int_1^2 (u^(-3)) du =-2(1/4 - 1) = -2*(-3/4) = 3/2`


`int_1^2 1/u du = ln u|_1^2 = ln 2 - ln 1 = ln 2`


Hence, evaluating the definite integral, yields `int_1^2 (4+u^2)/(u^3) du = 3/2 + ln 2.`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...