You need to evaluate the indefinite integral, such that:
`int f(theta)d theta = F(theta) + c`
`int (theta - csc theta* cot theta)d theta = int theta d theta - int (csc theta* cot theta)d theta`
Evaluating integral int theta d theta, using the formula `int theta^n d theta = (theta^(n+1))/(n+1) + c` , yields:
`int theta d theta = (theta^2)/2 + c`
`int (csc theta* cot theta)d theta = int (1/(sin theta)* (cos theta)/(sin...
You need to evaluate the indefinite integral, such that:
`int f(theta)d theta = F(theta) + c`
`int (theta - csc theta* cot theta)d theta = int theta d theta - int (csc theta* cot theta)d theta`
Evaluating integral int theta d theta, using the formula `int theta^n d theta = (theta^(n+1))/(n+1) + c` , yields:
`int theta d theta = (theta^2)/2 + c`
`int (csc theta* cot theta)d theta = int (1/(sin theta)* (cos theta)/(sin theta)) d theta`
You need to use substitution to solve the indefinite integral `int (csc theta* cot theta)d theta` , such that:
`sin theta = t => cos theta d theta = dt`
Replacing the variable, yields:
`int (dt)/(t^2) = int t^(-2) dt = -1/t + c`
Replacing back `sin theta` for t yields:
`int (csc theta* cot theta)d theta = -1/(sin theta) + c`
Gathering the results, yields:
`int (theta - csc theta* cot theta)d theta = (theta^2)/2 + 1/(sin theta) + c`
Hence, evaluating the indefinite integral yields `int (theta - csc theta* cot theta)d theta = (theta^2)/2 + 1/(sin theta) + c.`
No comments:
Post a Comment