Given equation is `yy'-2y^2=e^x`
=> `y' -2y=e^x y^(-1)`
An equation of the form `y'+Py=Qy^n`
is called the Bernoulli equation .
so, to proceed to solve this equation we have to transform the equation into a linear equation form of first order as follows
=>` y' (y^-n) +P y^(1-n)=Q`
let `u= y^(1-n)`
=> `(1-n)y^(-n)y'=u'`
=> `y^(-n)y' = (u')/(1-n)`
so ,
`y' (y^-n) +P y^(1-n)=Q`
=> `(u')/(1-n) +P u =Q `
so this equation is now of...
Given equation is `yy'-2y^2=e^x`
=> `y' -2y=e^x y^(-1)`
An equation of the form `y'+Py=Qy^n`
is called the Bernoulli equation .
so, to proceed to solve this equation we have to transform the equation into a linear equation form of first order as follows
=>` y' (y^-n) +P y^(1-n)=Q`
let `u= y^(1-n)`
=> `(1-n)y^(-n)y'=u'`
=> `y^(-n)y' = (u')/(1-n)`
so ,
`y' (y^-n) +P y^(1-n)=Q`
=> `(u')/(1-n) +P u =Q `
so this equation is now of the linear form of first order
Now,
From this equation ,
`y' -2y=e^x y^(-1)`
and
`y'+Py=Qy^n`
on comparing we get
`P=-2 Q=e^x , n=-1`
so the linear form of first order of the equation `y' -2y=e^x y^(-1) ` is given as
=> `(u')/(1-n) +P u =Q ` where `u= y^(1-n) =y^2`
=> `(u')/(1-(-1)) +(-2)u =e^x`
=> `(u')/2 -2u=e^x`
=> `(u')-4u = 2e^x`
so this linear equation is of the form
`u' + pu=q`
`p=-4 , q=2e^x`
so I.F (integrating factor ) = `e^(int p dx) = e^(int -4dx) = e^(-4x)`
and the general solution is given as
`u (I.F)=int q * (I.F) dx +c `
=> `u(e^(-4x))= int (2e^x) *(e^(-4x)) dx+c`
=> `u(e^(-4x))= int (2e^x) *(e^(-4x)) dx+c`
=> `u(e^(-4x))= 2 int (e^(-3x)) dx+c`
=>`u(e^(-4x))= 2 int (e^(-3x)) dx+c`
=>`u(e^(-4x))= 2 (1/(-3)*e^(-3x))+c` as` int e^(ax) dx = 1/a e^(ax).`
=>`u(e^(-4x))= (-2/3)*e^(-3x)+c `
=> `u = ((-2/3)*e^(-3x)+c)/(e^(-4x))`
but `u= y^2` so ,
`y^2 = ((-2/3)*e^(-3x)+c)/(e^(-4x))`
`y= sqrt((-2/3e^(-3x)+c)/(e^(-4x)))`
=`sqrt((-2/3e^(-3x)+c)*(e^(4x)))`
= `sqrt((-2/3e^(x)+ce^(4x)))`
=`e^(x/2)sqrt((-2+3ce^(3x))/3)`
is the general solution.
No comments:
Post a Comment