Arc length(L) of the function y=f(x) on the interval [a,b] is given by the formula,
`L=int_a^bsqrt(1+(dy/dx)^2)dx` , if y=f(x) and a`<=` x `<=` b
Now we have to differentiate the function,
`y=x^5/10+1/(6x^3)`
`dy/dx=1/10(5)x^(5-1)+1/6(-3)x^(-3-1)`
`dy/dx=x^4/2-1/2x^(-4)`
`dy/dx=x^4/2-1/(2x^4)`
`dy/dx=1/2(x^4-1/x^4)`
`dy/dx=1/2((x^8-1)/x^4)`
`L=int_2^5sqrt(1+((x^8-1)/(2x^4))^2)dx`
`L=int_2^5sqrt(1+(x^16-2x^8+1)/(4x^8))dx`
`L=int_2^5sqrt((4x^8+x^16-2x^8+1)/(4x^8))dx`
`L=int_2^5sqrt((x^16+2x^8+1)/(4x^8))dx`
`L=int_2^5sqrt(((x^8+1)/(2x^4))^2)dx`
`L=int_2^5(x^8+1)/(2x^4)dx`
`L=int_2^5(x^8/(2x^4)+1/(2x^4))dx`
`L=int_2^5(x^4/2+1/(2x^4))dx`
`L=[1/2(x^(4+1)/(4+1))+1/2(x^(-4+1)/(-4+1))]_2^5`
`L=[x^5/10-1/(6x^3)]_2^5`
`L=[5^5/10-1/(6(5)^3)]-[2^5/10-1/(6(2)^3)]`
`L=[3125/10-1/750]-[32/10-1/48]`
`L=[(234375-1)/750]-[(768-5)/240]`
`L=[234374/750]-[763/240]`
`L=(1874992-19075)/6000`
`L=1855917/6000`
`L=309.3195`
Arc length(L) of the function y=f(x) on the interval [a,b] is given by the formula,
`L=int_a^bsqrt(1+(dy/dx)^2)dx` , if y=f(x) and a`<=` x `<=` b
Now we have to differentiate the function,
`y=x^5/10+1/(6x^3)`
`dy/dx=1/10(5)x^(5-1)+1/6(-3)x^(-3-1)`
`dy/dx=x^4/2-1/2x^(-4)`
`dy/dx=x^4/2-1/(2x^4)`
`dy/dx=1/2(x^4-1/x^4)`
`dy/dx=1/2((x^8-1)/x^4)`
`L=int_2^5sqrt(1+((x^8-1)/(2x^4))^2)dx`
`L=int_2^5sqrt(1+(x^16-2x^8+1)/(4x^8))dx`
`L=int_2^5sqrt((4x^8+x^16-2x^8+1)/(4x^8))dx`
`L=int_2^5sqrt((x^16+2x^8+1)/(4x^8))dx`
`L=int_2^5sqrt(((x^8+1)/(2x^4))^2)dx`
`L=int_2^5(x^8+1)/(2x^4)dx`
`L=int_2^5(x^8/(2x^4)+1/(2x^4))dx`
`L=int_2^5(x^4/2+1/(2x^4))dx`
`L=[1/2(x^(4+1)/(4+1))+1/2(x^(-4+1)/(-4+1))]_2^5`
`L=[x^5/10-1/(6x^3)]_2^5`
`L=[5^5/10-1/(6(5)^3)]-[2^5/10-1/(6(2)^3)]`
`L=[3125/10-1/750]-[32/10-1/48]`
`L=[(234375-1)/750]-[(768-5)/240]`
`L=[234374/750]-[763/240]`
`L=(1874992-19075)/6000`
`L=1855917/6000`
`L=309.3195`
No comments:
Post a Comment