Hello!
Part 1 of the Fundamental Theorem of Calculus states that for a continuous function `f` `F'_a(x)=f(x),` where `F_a(x)=int_a^xf(t)dt.`
Here `f(t)=sqrt(t^2+4)` and `g(x)=F_0(x).`
Therefore
`g'(x)=F'_0(x)=f(x)=sqrt(x^2+4).`
or `g'(r)=sqrt(r^2+4)` (identical variable replacement).
Hello!
Part 1 of the Fundamental Theorem of Calculus states that for a continuous function `f`
`F'_a(x)=f(x),` where `F_a(x)=int_a^xf(t)dt.`
Here `f(t)=sqrt(t^2+4)` and `g(x)=F_0(x).`
Therefore
`g'(x)=F'_0(x)=f(x)=sqrt(x^2+4).`
or `g'(r)=sqrt(r^2+4)` (identical variable replacement).
No comments:
Post a Comment