`int5cos(x)/(sin^2(x)+3sin(x)-4)dx`
Take the constant out,
`=5intcos(x)/(sin^2(x)+3sin(x)-4)dx`
Now let's apply integral substitution:`u=sin(x)`
`=>du=cos(x)dx`
`=5int1/(u^2+3u-4)du`
Now to use partial fractions, denominator of the integrand needs to be factored,
Let's split the middle term,
`1/(u^2+3u-4)=1/(u^2-u+4u-4)`
`=1/(u(u-1)+4(u-1))`
`=1/((u-1)(u+4))`
Now let's write it as sum of partial fractions:
`1/((u-1)(u+4))=A/(u-1)+B/(u+4)`
Multiply the above by the LCD,
`=>1=A(u+4)+B(u-1)`
`1=Au+4A+Bu-B`
`1=(A+B)u+4A-B`
Equating the coefficients of the like terms,
`A+B=0` -----------------------------(1)
`4A-B=1` ----------------------------(2)
Solve the above linear equations to get the values of A...
`int5cos(x)/(sin^2(x)+3sin(x)-4)dx`
Take the constant out,
`=5intcos(x)/(sin^2(x)+3sin(x)-4)dx`
Now let's apply integral substitution:`u=sin(x)`
`=>du=cos(x)dx`
`=5int1/(u^2+3u-4)du`
Now to use partial fractions, denominator of the integrand needs to be factored,
Let's split the middle term,
`1/(u^2+3u-4)=1/(u^2-u+4u-4)`
`=1/(u(u-1)+4(u-1))`
`=1/((u-1)(u+4))`
Now let's write it as sum of partial fractions:
`1/((u-1)(u+4))=A/(u-1)+B/(u+4)`
Multiply the above by the LCD,
`=>1=A(u+4)+B(u-1)`
`1=Au+4A+Bu-B`
`1=(A+B)u+4A-B`
Equating the coefficients of the like terms,
`A+B=0` -----------------------------(1)
`4A-B=1` ----------------------------(2)
Solve the above linear equations to get the values of A and B,
Add equation 1 and 2,
`5A=1`
`A=1/5`
Plug the value of A in equation 1,
`1/5+B=0`
`B=-1/5`
Plug in the values of A and B in the partial fraction template,
`1/((u-1)(u+4))=(1/5)/(u-1)+(-1/5)/(u+4)`
`=1/(5(u-1))-1/(5(u+4))`
`int1/(u^2+3u-4)du=int(1/(5(u-1))-1/(5(u+4)))du`
`=int1/5(1/(u-1)-1/(u+4))du`
Take the constant out,
`=1/5int(1/(u-1)-1/(u+4))du`
Apply the sum rule,
`=1/5(int1/(u-1)du-int1/(u+4)du)`
Now use the common integral:`int1/xdx=ln|x|`
`=1/5(ln|u-1|-ln|u+4|)`
Substitute back `u=sin(x)`
`=1/5(ln|sin(x)-1|-ln|sin(x)+4|)`
`int5cos(x)/(sin^2(x)+3sin(x)-4)dx=5(1/5(ln|sin(x)-1|-ln|sin(x)+4|)`
Simplify and add a constant C to the solution,
`=ln|sin(x)-1|-ln|sin(x)+4|+C`
No comments:
Post a Comment