Saturday, 28 December 2013

`y = x^(2/x)` Use logarithmic differentiation to find dy/dx

 For the given problem:` y = x^(2/x)` , we apply the natural logarithm on both sides:


`ln(y) =ln(x^(2/x))`


Apply the natural logarithm property: `ln(x^n) = n*ln(x)` .


`ln(y) = (2/x) *ln(x)`


Apply chain rule  on the left side since y is is function of x.


`d/dx(ln(y))= 1/y *y'`



Apply product rule:` d/(dx) (u*v) = u'*v + v' *u` on the right side:


Let `u=2/x` then `u' = -2/x^2`


    ` v =ln(x)` then`...

 For the given problem:` y = x^(2/x)` , we apply the natural logarithm on both sides:


`ln(y) =ln(x^(2/x))`


Apply the natural logarithm property: `ln(x^n) = n*ln(x)` .


`ln(y) = (2/x) *ln(x)`


Apply chain rule  on the left side since y is is function of x.


`d/dx(ln(y))= 1/y *y'`



Apply product rule:` d/(dx) (u*v) = u'*v + v' *u` on the right side:


Let `u=2/x` then `u' = -2/x^2`


    ` v =ln(x)` then` v' = 1/x`


`d/(dx) ((2/x) *ln(x)) =d/(dx) ((2/x)) *ln(x) +(2/x) *d/(dx) (ln(x))`


                                `= (-2/x^2)*ln(x) + (2/x)(1/x)`


                              ` =(-2)/(x^2ln(x))+ 2/x^2`


                          ` = (-2ln(x)+2)/x^2`



The derivative of `ln(y) = (2/x) *ln(x) ` becomes :


`1/y*y'=(-2ln(x)+2)/x^2`


 Isolate y' by multiplying both sides by (y):


`y* (1/y*y')= ((-2ln(x)+2)/x^2)*y`


`y' =((-2ln(x)+2)*y)/x^2`


Plug-in `y = x^(2/x) `  on the right side:


`y' =((-2ln(x)+2)*x^(2/x))/x^2`



Or `y' =((-2ln(x)+2)*x^(2/x))*x^(-2)`


   `y' =(-2ln(x)+2)*x^(2/x-2)`


   `y' =(-2ln(x)+2)*x^((2-2x)/x)`


   ` y' =-2x^((2-2x)/x)ln(x)+2x^((2-2x)/x)`


`    y = -2x^((2-2x)/x) (lnx-1)

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...